首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
测绘学   2篇
地球物理   6篇
地质学   1篇
天文学   2篇
自然地理   28篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1981年   5篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
1.
Changes in polar ice could cause vertical crustal motion of up to several mm yr-1 along the edge of the Greenland and Antarctic ice caps. Measurements of the uplift could help constrain the changing ice volumes. The problem is complicated by the Earth's visco-elastic response to past loading, including the Late Pleistocene deglaciation. A method is described for removing these visco-elastic effects, by using simultaneous measurements of vertical motion and surface gravity. A linear combination of these two measurement types can be formed which is relatively independent of visco-elastic effects, and which can be interpreted in terms of present-day fluctuations in ice.  相似文献   
2.
3.
4.
We invert ISC PcP and PKP absolute and differential traveltimes in an attempt to infer the long-wavelength topography of the core-mantle boundary (CMB). The data selection and processing methods are described and evaluated. These travel-time data are very noisy and the geographic distribution of the data is highly non-uniform, inhibiting reliable inference of CMB topography. Spatial averaging enhances the coherent component of the residual variance (related to heterogeneity), however, the random component of the variance is much larger than the coherent component. We show that for PcP data the coherent signal due to mantle heterogeneity overshadows that arising from the CMB, and that the effects of mantle heterogeneity are mapped into our inferred CMB solutions. The PcP data are not correlated across the spatial averaging bins and seem to have a strong bias due to small-scale structure and/or noise. The non-uniform geographic sampling of the data plays a role in the mapping of mantle heterogeneity onto the CMB. Spatial patterns of CMB models inferred from different phases do not agree. Amplitudes of seismically inferred CMB undulations vary greatly. The sensitivity of inferred CMB models to the processing, spatial averaging procedure, and inversion techniques are investigated. Topographic amplitudes increase strongly with increasing input residual variance. The power spectrum of inferred topography indicates that there are unmodelled heterogeneities that must be described with spherical harmonics of degree 6 and higher. Based on this work, we conclude that reliable inference of long-wavelength CMB topography is not likely with the current ISC data set or with a spherical harmonic expansion truncated to degree and order 6.  相似文献   
5.
Inference of mantle viscosity from GRACE and relative sea level data   总被引:12,自引:0,他引:12  
Gravity Recovery And Climate Experiment (GRACE) satellite observations of secular changes in gravity near Hudson Bay, and geological measurements of relative sea level (RSL) changes over the last 10 000 yr in the same region, are used in a Monte Carlo inversion to infer-mantle viscosity structure. The GRACE secular change in gravity shows a significant positive anomaly over a broad region (>3000 km) near Hudson Bay with a maximum of ∼2.5 μGal yr−1 slightly west of Hudson Bay. The pattern of this anomaly is remarkably consistent with that predicted for postglacial rebound using the ICE-5G deglaciation history, strongly suggesting a postglacial rebound origin for the gravity change. We find that the GRACE and RSL data are insensitive to mantle viscosity below 1800 km depth, a conclusion similar to that from previous studies that used only RSL data. For a mantle with homogeneous viscosity, the GRACE and RSL data require a viscosity between  1.4 × 1021  and  2.3 × 1021  Pa s. An inversion for two mantle viscosity layers separated at a depth of 670 km, shows an ensemble of viscosity structures compatible with the data. While the lowest misfit occurs for upper- and lower-mantle viscosities of  5.3 × 1020  and  2.3 × 1021  Pa s, respectively, a weaker upper mantle may be compensated by a stronger lower mantle, such that there exist other models that also provide a reasonable fit to the data. We find that the GRACE and RSL data used in this study cannot resolve more than two layers in the upper 1800 km of the mantle.  相似文献   
6.
7.
8.
Summary The theory of wobble excitation for a non-rigid earth is extended to include the effects of the earth's fluid core and of the rotationally induced pole tide in the ocean. The response of the solid earth and oceans to atmospheric loading is also considered. The oceans are shown to be affected by changes in the gravitational potential which accompany atmospheric pressure disturbances and by the load-induced deformation of the solid earth. These various improvements affect the excitation equations by about 10 per cent. Atmospheric and oceanic excitation can be computed using either an angular momentum or a torque approach. We use the dynamical equations for a thin fluid to relate these two methods and to develop a more general, combined approach. Finally, geostrophic winds and currents are shown to be potentially important sources of wobble excitation, in contrast to what is generally believed.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号