首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   3篇
  2014年   1篇
  2010年   1篇
  2007年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
2.
Aquatic river habitat types have been characterized and classified for over five decades based on hydrogeomorphic and ecological variables. However, few studies considered the generation of underwater sound as a unique property of aquatic habitats, and therefore as a potential information source for freshwater organisms. In this study, five common habitat types along 12 rivers in Switzerland (six replicates per habitat type) were acoustically compared. Acoustic signals were recorded by submerging two parallel hydrophones and were analysed by calculating the energetic mean as well as the temporal variance of ten octave bands (31·5 Hz–16 kHz). Concurrently, each habitat type was characterized by hydraulic and geomorphic variables, respectively. The average relative roughness, velocity‐to‐depth ratio, and Froude number explained most of the variance of the acoustic signals created in different habitat types. The average relative roughness predominantly affected middle frequencies (63 Hz–1 kHz), while streambed sediment transport increased high‐frequency sound pressure levels (2–16 kHz) as well as the temporal variability of the recorded signal. Each aquatic habitat type exhibited a distinct acoustic signature or soundscape. These soundscapes may be a crucial information source for many freshwater organisms about their riverine environment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
3.
Among the environmental factors affecting benthic algae and cyanobacteria in streams, the one often producing the largest effects is flow intermittency. This study aimed to characterize the responses of algal assemblages to flow intermittency in a Mediterranean intermittent stream during the drying, non-flow (112 days), and rewetting phases. Algae growing in the epilithic, epipsammic and hyporheic streambed compartments were analyzed for pigment composition, and for the existence of structural changes in cells. Chlorophyll-a concentrations decreased between 60 to 90 % during the non-flow phase, indicating low resistance of algal assemblages to desiccation. In contrast, fast recoveries of Chlorophyll-a when flow resumed indicated high resilience. Pigment composition revealed that the epilithic algal assemblage was considerably different than the epipsammic and hyporheic ones. These differences were mainly attributed to the physical conditions prevailing on each streambed compartment that allowed the growth of different algal assemblages. During the non-flow phase, the synthesis of protective carotenoids (i.e. echinenone and scytonemin) and the occurrence of cell resistance structures (i.e. enlarged membrane thickness and resistant spores) enhanced resistance of the epilithic biofilm. The resistance observed in the epilithic biofilm might also be related to the tightly adhered growth-form of algae on this substratum. Main results suggest that algal assemblages in the epilithic compartment, which were the most exposed to desiccation, were structurally and functionally better adapted to flow interruption than those colonizing other streambed compartments, and that this compartment plays a crucial role in maintaining ecosystem functions under varying flow periods.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号