首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
  国内免费   1篇
大气科学   1篇
地球物理   2篇
地质学   2篇
海洋学   10篇
  2018年   1篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2004年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
Flower and fruit production of the abundant, tall, long-lived, dioecious, surface-pollinating seagrass species Enhalus acoroides (L.) Royle were estimated at seven sites in the reef flats off Bolinao (NW Luzon, The Philippines) featuring different fragmentation of the seagrass meadows. Fragmentation of the seagrass meadow was quantified as cover of E. acoroides and all seagrass species present in 20×20 m plots. E. acoroides and overall seagrass cover were correlated positively. The proportion of female flowers of E. acoroides that developed a fruit increased sharply as overall seagrass cover was around 50%. Apparent sex ratio bore no relationship with overall seagrass cover. This threshold-type of relationship suggests that fragmentation of seagrass meadows can have a major effect on the reproductive output of this species. A possible mechanism underlying these results would be a non-linear increase of the efficiency of trapping the surface-dispersed pollen with increasing seagrass canopy density. This provides the first evidence based on real data that fragmentation can affect the population dynamics of seagrass species.  相似文献   
2.
Phosphorus (P) is one of the major limiting nutrient in many freshwater ecosystems. During the last decade, attention has been focused on the fluxes of suspended sediment and particulate P through freshwater drainage systems because of severe eutrophication effects in aquatic ecosystems. Hence, the analysis and prediction of phosphorus and sediment dynamics constitute an important element for ecological conservation and restoration of freshwater ecosystems. In that sense, the development of a suitable prediction model is justified, and the present work is devoted to the validation and application of a predictive soluble reactive phosphorus (SRP) uptake and sedimentation models, to a real riparian system of the middle Ebro river floodplain. Both models are coupled to a fully distributed two‐dimensional shallow‐water flow numerical model. The SRP uptake model is validated using data from three field experiments. The model predictions show a good accuracy for SRP concentration, where the linear regressions between measured and calculated values of the three experiments were significant (r2 ≥ 0.62; p ≤ 0.05), and a Nash–Sutcliffe coefficient (E) that ranged from 0.54 to 0.62. The sedimentation model is validated using field data collected during two real flooding events within the same river reach. The comparison between calculated and measured sediment depositions showed a significant linear regression (p ≤ 0.05; r2 = 0.97) and an E that ranged from 0.63 to 0.78. Subsequently, the complete model that includes flow dynamics, solute transport, SRP uptake and sedimentation is used to simulate and analyse floodplain sediment deposition, river nutrient contribution and SRP uptake. According to this analysis, the main SRP uptake process appears to be the sediment sorption. The analysis also reveals the presence of a lateral gradient of hydrological connectivity that decreases with distance from the river and controls the river matter contribution to the floodplain. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
3.
Two high value species, yellowtail kingfish (Seriola lalandi) and hāpuku (groper, Polyprion oxygeneios), have been identified as suitable new candidates for New Zealand aquaculture. This paper reviews the research by NIWA and collaborators conducted to test the biological, technological and economic feasibility of farming these two species. NIWA now has the capability to produce sufficient kingfish fingerlings per year to meet the needs of the early stages of an industry. Advances in hāpuku aquaculture have also been significant, from spawning in captivity through to the selection of juveniles for improved growth. Recently, the first spawning of captive hāpuku F1 broodstock and production of F2 eggs, larvae and juveniles was achieved. Although hāpuku larval survival remains variable, the ability to close the life cycle, and the availability of domesticated broodstock, provide a significant step forward and increase the chances of this species being commercially farmed.  相似文献   
4.
Regime shift and principal component analysis of a spatially disaggregated database capturing time-series of climatic, nutrient and plankton variables in the North Sea revealed considerable covariance between groups of ecosystem indicators. Plankton and climate time-series span the period 1958–2003, those of nutrients start in 1980. In both regions, the period from 1989 to 2001 identified in principal component 1 had warmer surface waters, higher Atlantic inflow and stronger winds, than the periods before or after. However, it was preceded by a regime shift in both open (PC2) and coastal (PC3) waters during 1977 towards more hours of sunlight and higher water temperature, which lasted until 1997. The relative influence of nutrient availability and climatic forcing differed between open and coastal North Sea regions. Inter-annual variability in phytoplankton dynamics of the open North Sea was primarily regulated by climatic forcing, specifically by sea surface temperature, Atlantic inflow and co-varying wind stress and NAO. Coastal phytoplankton variability, however, was regulated by insolation and sea surface temperature, as well as Si availability, but not by N or P. Regime shifts in principal components of hydrographic and climatic variables (explaining 55 and 61% of the variance in coastal and open water variables) were detected using Rodionov's sequential t-test. These shifts in hydroclimatic variables which occurred around 1977, 1989, 1997 and 2001, were synchronized in open and coastal waters, and were tracked by open water chlorophyll and copepods, but not by coastal plankton. North–central–south or open-coastal spatial breakdowns of the North Sea explained similar amounts of variability in most ecosystem indicators with the exception of diatom abundance and chlorophyll concentration, which were clearly better explained using the open-coastal configuration.  相似文献   
5.
6.
There is global interest in providing scientific advice on optimal harvesting of all commercially exploited fish stocks. Nevertheless, many commercially important stocks lack analytical assessments. Therefore, we evaluate a data-moderate stock assessment method: the stochastic surplus production model in continuous time (SPiCT). The method was applied to two Namibian stocks: (i) the data-rich Cape monkfish Lophius vomerinus, where results are compared to a new data-rich assessment using a state–space assessment model (SAM); and (ii) the data-moderate west coast sole Austroglossus microlepis, which is an important bycatch species in the Cape monkfish fishery, but currently unassessed. The information available to the data-moderate assessment is total commercial catch, commercial catch per unit effort (CPUE), and survey CPUE. SPiCT and SAM gave largely consistent estimates of relative fishing mortality (F/FMSY) and relative exploitable biomass (B/BMSY) for the Cape monkfish stock, although with some discrepancies. Differences in the biomass estimates between the two assessments suggest that further investigation is required to understand the cause, and that some caution is necessary when considering the biomass of the stock. SPiCT shows that the west coast sole may be overexploited, although the confidence bounds were too wide for a firm conclusion. Similarity in the estimates of F/FMSY for Cape monkfish in recent years, using SPiCT relative to SAM, likewise indicates the suitability of SPiCT for managing west coast sole.  相似文献   
7.
Anthropogenic eutrophication affects the Mediterranean, Black, North and Baltic Seas to various extents. Responses to nutrient loading and methods of monitoring relevant indicators vary regionally, hindering interpretation of ecosystem state changes and preventing a straightforward pan-European assessment of eutrophication symptoms. Here we summarize responses to nutrient enrichment in Europe's seas, comparing existing time-series of selected pelagic (phytoplankton biomass and community composition, turbidity, N:P ratio) and benthic (macro flora and faunal communities, bottom oxygen condition) indicators based on their effectiveness in assessing eutrophication effects. Our results suggest that the Black Sea and Northern Adriatic appear to be recovering from eutrophication due to economic reorganization in the Black Sea catchment and nutrient abatement measures in the case of the Northern Adriatic. The Baltic is most strongly impacted by eutrophication due to its limited exchange and the prevalence of nutrient recycling. Eutrophication in the North Sea is primarily a coastal problem, but may be exacerbated by climatic changes. Indicator interpretation is strongly dependent on sea-specific knowledge of ecosystem characteristics, and no single indicator can be employed to adequately compare eutrophication state between European seas. Communicating eutrophication-related information to policy-makers could be facilitated through the use of consistent indicator selection and monitoring methodologies across European seas. This work is discussed in the context of the European Commission's recently published Marine Strategy Directive.  相似文献   
8.
The metamorphic evolution of micaschists in the north‐eastern part of the Saxothuringian Domain in the Central European Variscides is characterized by the early high‐pressure M1 assemblage with chloritoid in cores of large garnet porphyroblasts and a Grt–Chl–Phe–Qtz ± Pg M2 assemblage in the matrix. Minerals of the M1–M2 stage were overprinted by the low‐pressure M3 assemblage Ab–Chl–Ms–Qtz ± Ep. Samples with the best‐preserved M1–M2 mineralogy mostly appear in domains dominated by the earlier D1 deformation phase and are only weakly affected by subsequent D2 overprint. Thermodynamic modelling suggests that mineral assemblages record peak‐pressure conditions of ≥18–19 kbar at 460–520 °C (M1) followed by isothermal decompression 10.5–13.5 kbar (M2) and final decompression to <8.5 kbar and <480 °C (M3). The calculated peak P–T conditions indicate a high‐pressure/low‐temperature apparent thermal gradient of ~7–7.5 °C km?1. Laser ablation inductively coupled plasma mass spectrometry isotopic dating and electron microprobe chemical dating of monazite from the M1–M2 mineral assemblages give ages of 330 ± 10 and 328 ± 6 Ma, respectively, which are interpreted as the timing of a peak pressure to early decompression stage. The observed metamorphic record and timing of metamorphism in the studied metapelites show striking similarities with the evolution of the central and south‐western parts of the Saxothuringian Domain and suggest a common tectonic evolution along the entire eastern flank of the Saxothuringian Domain during the Devonian–Carboniferous periods.  相似文献   
9.
A significant relation was established between the maximum extent of sea ice covering the Baltic Sea and the hypoxic area in the deeper parts of the Baltic Proper, with a lag of 2 years: for the period 1970–2000, less ice was correlated with a smaller anoxic area. At the same time, maximum ice extent is subject to a long-term climate-related decline, due to higher air temperatures and an increased frequency of westerly winds. Together, this suggests that the hypoxic area will decrease in the coming decades. Internal sedimentary phosphorus-loading is closely related to the hypoxic area and hence would decrease as well. Wind strength variability did not have a significant additive effect to the variance in hypoxic area already explained by sea ice extent. The observed lag is in agreement with the order of magnitude of estimated residence times in the shallower sub-basins feeding the Baltic Proper, where ice extent varies most.  相似文献   
10.
Aquaculture, like terrestrial farming, cannot achieve economic and sustainable production without high performing genetic stocks tailored to the conditions under which they are grown. It is essential, therefore, that aquaculture investment includes genetics and biotechnology to adapt marine livestock to the novel conditions of intensive aquaculture and to the demanding markets into which they are sold. The return on investment in well-structured breeding programmes can be very high, and significant performance and economic gains have been demonstrated in multiple species. Many factors must be considered in designing a genetic improvement programme, including the reproductive biology of the species and the identification of realistic and commercially relevant breeding goals based on the resources and facilities available. This paper reviews the options available to aquaculturists and provides examples of how these are being applied to six aquaculture species in New Zealand: king salmon, hāpuku, kingfish, GreenshellTM mussels, Pacific oysters and pāua (abalone).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号