首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   548篇
  免费   4篇
  国内免费   11篇
测绘学   9篇
大气科学   34篇
地球物理   98篇
地质学   212篇
海洋学   63篇
天文学   97篇
自然地理   50篇
  2019年   3篇
  2018年   8篇
  2017年   7篇
  2016年   12篇
  2015年   7篇
  2014年   13篇
  2013年   24篇
  2012年   18篇
  2011年   22篇
  2010年   17篇
  2009年   38篇
  2008年   30篇
  2007年   22篇
  2006年   20篇
  2005年   12篇
  2004年   24篇
  2003年   17篇
  2002年   16篇
  2001年   15篇
  2000年   10篇
  1999年   10篇
  1998年   6篇
  1997年   5篇
  1996年   14篇
  1995年   9篇
  1994年   14篇
  1993年   5篇
  1992年   6篇
  1991年   7篇
  1990年   6篇
  1989年   8篇
  1988年   7篇
  1987年   9篇
  1986年   8篇
  1985年   9篇
  1984年   8篇
  1983年   11篇
  1982年   11篇
  1981年   10篇
  1980年   5篇
  1979年   7篇
  1978年   5篇
  1976年   5篇
  1975年   5篇
  1974年   2篇
  1973年   6篇
  1970年   3篇
  1965年   2篇
  1931年   2篇
  1921年   2篇
排序方式: 共有563条查询结果,搜索用时 15 毫秒
1.
2.
We report on the analysis of a ∼60-ks XMM–Newton observation of the bright, narrow emission line quasar PG1211+143. Absorption lines are seen in both European Photon Imaging Camera and Reflection Grating Spectrometer spectra corresponding to H- and He-like ions of Fe, S, Mg, Ne, O, N and C. The observed line energies indicate an ionized outflow velocity of ∼24 000 km s−1. The highest energy lines require a column density of   N H∼ 5 × 1023 cm−2  , at an ionization parameter of  log ξ∼ 3.4  . If the origin of this high-velocity outflow lies in matter being driven from the inner disc, then the flow is likely to be optically thick within a radius of ∼130 Schwarzschild radii, providing a natural explanation for the big blue bump (and strong soft X-ray) emission in PG1211+143.  相似文献   
3.
The monthly variations of below- and aboveground biomass of Spartina alterniflora were documented for a south Louisiana salt marsh from March 2004 to March 2005, and in March 2006 and 2007. The annual production rate above- and belowground was 1821 and 11,676 g m?2, respectively (Smalley method), and the annual production rate per biomass belowground was 10.7 g dry weight?1, which are highs along the latitudinal distributions of the plant’s range. The average root + rhizome/shoot ratio (R&R/S) was 2.6:1, which is lower than the R&R/S ratios of 4 to 5.1 reported for Spartina sp. marshes in the northeastern US. The belowground biomass increased from July to September and fluctuated between October and November, after which it declined until February when the growing season began. The belowground biomass was dominated by rhizomes, which declined precipitously in spring and then rose to a seasonal high in the month before declining again as the late summer rise in inflorescence began. Over half of the root biomass in a 30-cm soil profile was in the upper 10 cm, and in the 10- to 20-cm profile for rhizomes. The maximum March biomass above- and belowground was four to five times that of the minimum biomass over the four sampling years. The net standing stock (NSS) of N and P in live biomass aboveground compared to that in the belowground biomass was about 1.7 times higher and equal, respectively, but the NSS of N and P for the live + dead biomass was about six times higher belowground. The average nitrogen/phosphorous molar ratios of 16:1 aboveground is in agreement with the often tested N limitation of biomass accumulation aboveground, whereas the 37:1 belowground ratio suggests that there is an influence of P on R&R foraging for P belowground. Some implications for management and restoration are, in part, that salt marshes should be evaluated and examined using information on the plant’s physiology and production both below- and aboveground.  相似文献   
4.
We report the results of iodine-xenon analyses of irradiated halide grains extracted from the H-chondrite Monahans (1998) and compare them with those from Zag (Whitby et al., 2000) to address the timing of aqueous processing on the H-chondrite parent body. Xe isotopic analyses were carried out using the RELAX mass spectrometer with laser stepped heating. The initial 129I/127I ratio in the Monahans halide was determined to be (9.37 ± 0.06) × 10−5 with an iodine concentration of ∼400 ppb. Significant scatter, especially in the Zag data, indicates that a simple interpretation as a formation age is unreliable. Instead we propose a model whereby halide minerals in both meteorites formed ∼5 Ma after the enstatite achondrite Shallowater (at an absolute age of 4559 Ma). This age is in agreement with the timing of aqueous alteration on the carbonaceous chondrite parent bodies and ordinary chondrite metamorphism and is consistent with the decay of 26Al as a heat source for heating and mobilisation of brines on the H-chondrite parent body. Post accretion surface impact events may have also contributed to the heat source.  相似文献   
5.
6.
Authigenic iron and titanium oxides occur in three main textural varieties in the St. Bees Sandstone, a Triassic red bed succession in Cumbria. These are: (a) overgrowths of haematite, titaniferous haematite, anatase, and rutile which generally occur on detrital host grains of similar compositions. The overgrowths may occur as syntaxial rim cements or rhombohedral and prismatic projections and are always in optical continuity, (b) discrete crystals of anatase (including octahedrite) and haematite 10-40 μm in size occur in pore spaces, and (c) fine grained ( < 1 μm) pigmentary haematite occurs as grain coatings around detrital grains and in the interstitial matrix. The euhedral nature and pore-filling habit clearly indicate the authigenic origin of these iron- and titanium oxides. All three textural varieties are believed to have been precipitated from ground waters containing dissolved ferrous and titanium ions. These ions were derived from the intrastratal solution of detrital iron and titanium bearing grains including ferromagnesian silicates and iron-titanium oxides. The precipitation of iron oxides from migrating ground waters in the manner described here goes some way to explaining how thick, uniformly red successions can be formed.  相似文献   
7.
Discoveries of fossil Homo outside Africa predating 1.0 Ma have generated much discussion about hominin dispersal routes. However, tool-using bipeds were only one element of the inter-continental mammalian dispersals that occurred during the climatic changes of the Pliocene and Pleistocene. This paper will place hominin movements in the context of those of the wider mammalian fauna, which includes carnivores, bovids and non-human primates. The distribution of these different taxa suggests that species moved individually when the environmental conditions were right for them, rather than in multi-species waves of dispersal, and allows evaluation of the contextual evidence for the newly emerging ‘Out of Asia’ paradigm as well as the established ‘Out of Africa’ model.  相似文献   
8.
Fluctuation of the carbon isotope composition of marine carbonates has recently been developed as a powerful tool for the identification of ocean-wide anoxic conditions and changes in the world budget of carbon and oxygen. A change in δ13 from the normal marine values (0 to + 2%) to values highly enriched in 13C (+3·5 to 4·5%) is recorded at the base of the Zechstein sequence both in central Germany and northeastern England. The change occurred over a relatively short period of time indicating a rapid and pronounced change in the organic carbon/carbonate budget. Evidence from other Permian basins show similar highly enriched δ13C values. This change may correspond to that in carbon balance distinguished by the Garrels and Perry (1975) model and based on the change in sulphur isotopic composition during the Permian.  相似文献   
9.
The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth–Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth–Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.  相似文献   
10.
Consideration of available thermodynamic data and the published results of direct experiments relating to (1) formation. of periclase from dolomite and (2) hydration of periclase to brucite, permits the following conclusions to be drawn: (1) At very low partial pressures of CO2 (perhaps of the order of 1 bar) and relatively high partial pressures of water (up to 2000 bars), dolomite can break down directly to brucite and calcite at temperatures above about 400° C, and below temperatures on the brucite dehydration curve. (2) The reaction dolomite calcite + periclase + CO2 in contact metamorphism near granitic bodies is likely to occur only at low partial pressures of CO2 (perhaps 10 or 20 bars); this can be achieved without direct formation of brucite, by maintaining a partial pressure of water of the order of 1000 bars or more. (3) At low CO2 pressures dolomite may re-form in the cooling stages of metamorphism by reaction between calcite, brucite, and CO2 at temperatures below about 400° C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号