首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地球物理   5篇
地质学   2篇
  2013年   1篇
  1990年   1篇
  1987年   3篇
  1986年   1篇
  1978年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The structures and microstructures of the Takanuki and Hitachi areas in the Abukuma massif, Northeast Japan are described. In the Takanuki area, the basic Gosaisho series thrusts the pelitic Takanuki ones in a HP metamorphic context. The nappe structure is afterwards refolded by a migmatitic dome: the Samegawa dome, in a HT metamorphic context. Microtectonic analysis shows that the nappe was transported from south to north along the stretching lineation. Geometric features suggest that the Samegawa dome was emplaced by diapirism. The role of the thrust surface as an instable interface promoting the doming is emphasized. The Hitachi metamorphic rocks composed of basic schist, limestone and sandstone shist thrust the pelitic rocks of the western Hitachi gneisses. As for the Takanuki area, the thrusting occurred in ductile synmetamorphic conditions with a north or northeastward displacement. Owing to lithologic, petrologic, structural similitudes, the nappe of the Hitachi metamorphic rocks and that of the Gosaisho series are unified into a unique nappe with a northward motion. The emplacement occurred between late Permian and late Cretaceous likely in late Jurassic. The allochthonous units of the Abukuma massif are correlated with the Green Schist nappe described in Southwest Japan, since they are surrounded by the same zones, namely the Tanba zone and the Kurosegawa-Kitakami one. Moreover both in Southwest and Northeast Japan, the emplacement of the Green Schist nappes is due to a shear deformation inducing rotational structures along the stretching lineation indicating the same sense of transport, that is eastward in Southwest Japan and northward in Northeast Japan, owing to the late bending of the Japanese Islands. The late Jurassic nappe structure is obliquely overprinted by a HT metamorphism, Ryoke in Southwest Japan, Abukuma in Northeast Japan, and afterwards cut by late faults as the Median Tectonic Line or the Tanakura fault, giving rise to the present complexity.  相似文献   
2.
Isotope fractionation of carbon between CO2 and carbon dissolved in a tholeiitic magma measured in the range 1120–1280 ° C, 7.0–8.4 Kb varies from 4.6 to 4 in favor of CO2. These results make possible to explain all deep seated 13C values from a restricted range of primary mantle 13C concentrations. They also suggest that carbon could be dissolved in basaltic magmas in a reduced form.  相似文献   
3.
Eight submersible dives between 3000 and 4200 m water depth were made off southern Japan in the eastern Nankai subduction zone. Benthic communities associated with chemosynthetic processes were discovered along the 800 m wide active tectonic zone, at the toe of the accretionary prism. A benthic community was also discovered along a zone of active compression, at the foot of Zenisu Ridge, 30 km south of Nankai Trough. Temperature measurements within the sediments below the benthic communities confirm that upward motion of interstitial water occurs there. Studies of water samples indicate advection of methane and light hydrocarbons. Specimens of the benthic community have been shown to have included in their shells carbonate resulting from methane consumption. Thus the benthic communities are related to overpressure-driven fluid advection along tectonic zones with active surface deformation. A 300 m high active scarp at the toe of the accretionary prism is related to relative motion in a 280° direction which is close to the 305° average direction of subduction in this area. The dives establish further that compressive deformation is presently occurring at the foot of Zenisu Ridge. The previous interpretation of the Zenisu Ridge as a zone of recent north-south intraplate shortening, 40 km south of the Nankai Trench, is confirmed. We conclude that tectonic evolution might well lead to future detachment of the Zenisu Ridge and overthrusting of this large piece of oceanic crust over the continental margin. Such a process might be an efficient one to emplace ophiolites over continents.  相似文献   
4.
The effects of wellbore‐wall compression from rough excavation on monitored groundwater levels and qualities under natural hydraulic gradient conditions were investigated in a shallow clayey Andisol aquifer. Nine wellbores reaching the underlying aquitard at about 2.6‐m depth were constructed by dynamic cone penetrometry to mimic rough wellbore construction. Five of these were constructed under wet aquifer soil conditions and the remaining four under dry conditions. A 15‐month period monitoring showed that the groundwater levels in the wellbores constructed under wet conditions responded significantly in retard of, and in narrower ranges than, those constructed under dry conditions. The wellbore‐wall hydraulic conductivities at the former wellbores were calculated to be more than one to two orders of magnitude lower than those at the latter ones. Furthermore, remarkable nitrate removal attributable to the occurrence of a heterotrophic denitrification was observed in one of the former wellbores. In contrast, the groundwater levels and qualities in the latter wellbores appeared to be generally similar to those monitored in the conventional soil coring and augering‐derived wellbores. Our results suggest that the wellbore‐wall compression induced by rough excavation under wet and soft aquifer soil conditions leads to a substantial decrease in the wellbore‐wall hydraulic conductivity, which in turn can lead to unreliable groundwater levels and qualities. This problem can occur in clayey Andisols whenever the aquifer soil is wet; however, the problem can be largely avoided by constructing the wellbore under dry and hard aquifer soil conditions.  相似文献   
5.
ZnSiO3 clinopyroxene stable above 3 GPa transforms to ilmenite at 10–12 GPa, which further decomposes into ZnO (rock salt) plus stishovite at 20–30 GPa. The enthalpy of the clinopyroxene-ilmenite transition was measured by high-temperature solution calorimetry, giving ΔH0=51.71 ±3.18 kJ/mol at 298 K. The heat capacities of clinopyroxene and ilmenite were measured by differential scanning calorimetry at 343–733 and 343–633 K, respectively. The C p of ilmenite is 3–5% smaller than that of clinopyroxene. The entropy of transition was calculated using the measured enthalpy and the free energy calculated from the phase equilibrium data. The enthalpy, entropy and volume changes of the pyroxene-ilmenite transition in ZnSiO3 are similar in magnitude to those in MgSiO3. The present thermochemical data are used to calculate the phase boundary of the ZnSiO3 clinopyroxene-ilmenite transition. The calculated boundary,
  相似文献   
6.
Seabeam mapping and detailed geophysical surveying have been conducted over the Nankai Trough where the fossil Shikoku Ridge is subducted below southwest Japan. The geometry of the oceanic lithosphere bending under the margin as well as the three-dimensional structure of the accretionary prism have thus been determined in detail. Three 350° trending, probably transform faults have been identified in the area of the survey. They do not extend further south and appear to be limited to the last phase of spreading within the Shikoku Basin, probably between 15 and 12 Ma; this last phase of spreading would then have been accompanied by a sharp change in spreading direction from east-west to N 350°. The two eastern transform faults limit a zone of reduced Nankai trench fill of turbidites opposite to the Tosa Bae Embayment. This observation suggests that the Tosa Bae Embayment actually results from this reduced supply of trench fill to the imbricate thrusting process. The accretionary prism can be divided into three different tectonic provinces separated by continuous mappable thrusts, the Lower and Upper Main Thrusts. Surface shortening is limited to the lower accretionary prism south of the Upper Main Thrust (UMT) whereas uplift with possible extension characterizes the prism above the UMT. Deformation, due to the relative plate motion, mostly affects the lower accretionary prism south of the UMT.  相似文献   
7.
Deep-water samples collected during the Kaiko project are often associated with biological communities located on geological structures favorable to fluid venting. The evidence of fluid venting are the temperature anomalies, the decrease in sulfate concentrations, the content in methane and the lowC1(C2 +C3) ratio of light hydrocarbons. Because of large dilution by ambiant seawater during sampling it is difficult to compute the composition of the advected end-member pore fluid. Part of this fluid should originate in the “petroleum window”, i.e. at temperature about 60°C. Modeling the upward flow of water, taking into account the anomalies of temperature measured on the seafloor and the geochemical anomalies, leads to non-steady-state advection of the pore fluid. The occurrence of a deep component in the fluid has implications for the geological and tectonic models of the subduction zones off Japan.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号