首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
地球物理   7篇
地质学   5篇
海洋学   1篇
自然地理   1篇
  2018年   1篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有14条查询结果,搜索用时 468 毫秒
1.
Skold ME  Thyne GD  McCray JE 《Ground water》2007,45(3):368-373
This article presents a method for estimating chemical thermodynamic constants from experimental data using the two computer programs UCODE_2005 and PHREEQC. As an example, the conditional stability constant for lead (Pb) complexation by a remediation agent (carboxymethyl-beta-cyclodextrin) is estimated, but the method can be applied to estimate other thermodynamic parameters such as sorption constants and degradation rate constants. Advantages of this technique include estimation of uncertainties associated with estimated parameters, evaluation of information content of observations, statistical evaluation of the appropriateness of the conceptual model, and statistical-based comparison of different models.  相似文献   
2.
Gurdak JJ  McCray JE  Thyne G  Qi SL 《Ground water》2007,45(3):348-361
A methodology is proposed to quantify prediction uncertainty associated with ground water vulnerability models that were developed through an approach that coupled multivariate logistic regression with a geographic information system (GIS). This method uses Latin hypercube sampling (LHS) to illustrate the propagation of input error and estimate uncertainty associated with the logistic regression predictions of ground water vulnerability. Central to the proposed method is the assumption that prediction uncertainty in ground water vulnerability models is a function of input error propagation from uncertainty in the estimated logistic regression model coefficients (model error) and the values of explanatory variables represented in the GIS (data error). Input probability distributions that represent both model and data error sources of uncertainty were simultaneously sampled using a Latin hypercube approach with logistic regression calculations of probability of elevated nonpoint source contaminants in ground water. The resulting probability distribution represents the prediction intervals and associated uncertainty of the ground water vulnerability predictions. The method is illustrated through a ground water vulnerability assessment of the High Plains regional aquifer. Results of the LHS simulations reveal significant prediction uncertainties that vary spatially across the regional aquifer. Additionally, the proposed method enables a spatial deconstruction of the prediction uncertainty that can lead to improved prediction of ground water vulnerability.  相似文献   
3.
The recent development of structure‐from‐motion (SfM) and multi‐view stereo (MVS) photogrammetry techniques has enabled semi‐automatic high‐resolution bathymetry using aerial images taken by consumer‐grade digital cameras mounted on unmanned aerial vehicles (UAVs). However, the applicability of these techniques is sometimes limited by sun and sky reflections at the water surface, which render the point‐cloud density and accuracy insufficient. In this research, we present a new imaging technique to suppress the effect of these water‐surface reflections. In this technique, we order a drone to take a short video instead of a still picture at each waypoint. We then apply a temporal minimum filter to the video. This filter extracts the smallest RGB values in all the video frames for each pixel, and composes an image with greatly reduced reflection effects. To assess the performance of this technique, we applied it at three small shallow‐water sites. Specifically, we evaluated the effect of the technique on the point cloud density and the accuracy and precision of the photogrammetry. The results showed that the proposed technique achieved a far denser point cloud than the case in which a randomly chosen frame was used for each waypoint, and also showed better overall accuracy and precision in estimating water‐bottom elevation. The effectiveness of this new technique should depend on the surface wave state and sky radiance distribution, and this dependence, as well as the applicability to large areas, should be investigated in future research. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
4.
In order to improve understanding of the fate of septic tank or individual sewage disposal system (ISDS) effluent in regolith overlying fractured-rock aquifers, effluent from an ISDS in such a setting was tracked via geophysical, hydrological, and geochemical methods. Under typical precipitation conditions, the effluent entered the fractured bedrock within 5 m of the boundary of the constructed infiltration area. During a period of unusually high spring recharge, the plume migrated between 50 and 100 m within the regolith before infiltrating the fractured bedrock. The chemical signature of the effluent is similar to that required to account for the decline in water quality, suggesting a causative relationship (as estimated from mass-balance models of the surface-water chemistry near the mouth of the basin). The elevated salt content of the effluent during periods of high natural recharge to the infiltration area correlates with elevated salt concentrations in surface and groundwater at the basin scale, suggesting that some of the effluent salt load may be stored in the unsaturated zone during dry periods and flushed during periods of elevated natural recharge.  相似文献   
5.
一种基于真实身份的BBS系统实名保障技术   总被引:1,自引:0,他引:1  
用户身份的真实性一直是BBS系统管理的重要方面之一。采用SAML协议,将跨域单点登录中的认证技术引入到BBS系统中,从而实现了用户采用真实身份登录BBS系统,保证了BBS用户的实名。并以多个高校的BBS系统作为样例,建立起基于真实身份的示范BBS系统。  相似文献   
6.
The geochemical computer model PHREEQC can simulate solute transport in fractured bedrock aquifers that can be conceptualized as dual-porosity flow systems subject to one-dimensional advective-dispersive transport in the bedrock fractures and diffusive transport in the bedrock matrix. This article demonstrates how the physical characteristics of such flow systems can be parameterized for use in PHREEQC, it provides a method for minimizing numerical dispersion in PHREEQC simulations, and it compares PHREEQC simulations with results of an analytical solution. The simulations assumed a dual-porosity conceptual model involving advective-reactive-dispersive transport in the mobile zone (bedrock fracture) and diffusive-reactive transport in the immobile zone (bedrock matrix). The results from the PHREEQC dual-porosity transport model that uses a finite-difference approach showed excellent agreement compared with an analytical solution.  相似文献   
7.
8.
High hydrogen pressure pyrolysis (hydropyrolysis) was performed on samples of solvent extracted Kimmeridge Clay Formation source rock with a maturity equivalent to ca. 0.35% vitrinite reflectance. We describe the types and distributions of organic nitrogen compounds in the pyrolysis products (hydropyrolysates) using GC-MS. Compounds identified included alkyl-substituted indoles, carbazoles, benzocarbazoles, quinolines and benzoquinolines. The distributions of the isomers of methylcarbazoles, C2-alkylcarbazoles and benzocarbazoles in the hydropyrolysates were compared to a typical North Sea oil. The hydropyrolysates compared to the North Sea oil, showed increased contributions from alkylcarbazole isomers where the nitrogen group is "exposed" (no alkyl substituents adjacent to the nitrogen functionality) and appreciable levels of benzo[b]carbazole relative to benzo[a]- and benzo[c]carbazoles. Hydropyrolysis is found to be an ideal technique for liberating appreciable quantities of heterocyclic organic nitrogen compounds from geomacromolecules. The products released from the immature Kimmeridge Clay are thought to represent a potential source of nitrogen compounds in the bound phase (kerogen) able to contribute to the free bitumen phase during catagenesis.  相似文献   
9.
10.
A robust classification scheme for partitioning water chemistry samples into homogeneous groups is an important tool for the characterization of hydrologic systems. In this paper we test the performance of the many available graphical and statistical methodologies used to classify water samples including: Collins bar diagram, pie diagram, Stiff pattern diagram, Schoeller plot, Piper diagram, Q-mode hierarchical cluster analysis, K-means clustering, principal components analysis, and fuzzy k-means clustering. All the methods are discussed and compared as to their ability to cluster, ease of use, and ease of interpretation. In addition, several issues related to data preparation, database editing, data-gap filling, data screening, and data quality assurance are discussed and a database construction methodology is presented. The use of graphical techniques proved to have limitations compared with the multivariate methods for large data sets. Principal components analysis is useful for data reduction and to assess the continuity/overlap of clusters or clustering/similarities in the data. The most efficient grouping was achieved by statistical clustering techniques. However, these techniques do not provide information on the chemistry of the statistical groups. The combination of graphical and statistical techniques provides a consistent and objective means to classify large numbers of samples while retaining the ease of classic graphical presentations. Electronic Publication  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号