首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   3篇
  国内免费   1篇
测绘学   1篇
大气科学   7篇
地球物理   34篇
地质学   7篇
海洋学   18篇
天文学   28篇
自然地理   4篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   9篇
  2007年   4篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   6篇
  2002年   5篇
  2001年   1篇
  2000年   5篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1995年   5篇
  1994年   1篇
  1993年   4篇
  1991年   2篇
  1986年   1篇
  1984年   1篇
  1980年   1篇
  1976年   3篇
  1971年   2篇
  1970年   2篇
  1969年   1篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
1.
2.
The results obtained from an Ocean General Circulation Model (OGCM), the Modular Ocean Model 2.2, forced with the National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis data, and observational data have been utilized to document the climatological seasonal cycle of the upper ocean response in the Tropical Indian Ocean. We address the various roles played by the net surface heat flux and the local and remote ocean dynamics for the seasonal variation of near-surface heat budget in the Tropical Indian Ocean. The investigation is based in seven selected boxes in the Arabian Sea, Bay of Bengal and the Equatorial Indian Ocean. The changes of basin-wide heat budget of ocean process in the Arabian Sea and the Western Equatorial Indian Ocean show an annual cycle, whereas those in the Bay of Bengal and the Eastern Equatorial Indian Ocean show a semi-annual cycle. The time tendency of heat budget in the Arabian Sea depends on both the net surface heat flux and ocean dynamics while on the other hand, that in the Bay of Bengal depends mainly on the net surface flux. However, it has been found that the changes of heat budget are very different between western and eastern regional sea areas in the Arabian Sea and the Bay of Bengal, respectively. This difference depends on seasonal variations of the different local wind forcing and the different ocean dynamics associated with ocean eddies and Kelvin and Rossby waves in each regional sea areas. We also discuss the comparison and the connection for the seasonal variation of near-surface heat budget among their regional sea areas. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
3.
Numerical solutions are examined for isolated, intense vortices as influenced by western bounding bottom topography through the use of a rigid-lid, two-layer primitive -plane numerical model. Systematic studies are made of the sense of rotation (cyclonic/anticyclonic), the consequence of varying the gradient of bottom slope, and the different vertical shear in a two layer ocean. In the basin with a bottom slope, the nearly barotropic anticyclonic vortex forms a modon-like vortex for S with fixedRo 2<O(1) (where is the ratio between the variation of the Coriolis parameter across the eddy to the Coriolis parameter in the center, S the topographic effect and,Ro 2 the Rossby number in the lower layer) and its generation is due to a compound effect of the planetary beta, topographic beta, avvection, and mirror image. The formation of the modon-like vortex and the propagation of the original vortex onto the bottom slope depends on the strength of slope gradient and the baroclinicity of the vortex. The nearly barotropic anticyclonic vortex evolves into the stronger upper ocean one with increasing S: the gradient of the bottom slope becomes steeper. Then the original vortex lives longer because the barotropic component of the energy is converted to the baroclinic one and it moves toward southeast in forming a modon-like vortex in the lower layer. The evolution of a vortex in the model results are compared to observational results of a Kuroshio warm core ring (KWCR) obtained from hydrographic data (June, 1985) and from NOAA satellite infrared images (April, 1985 to July, 1985). It is shown that a KWCR (June, 1985) is influenced by the western continental slope/shelf of the East Japan.  相似文献   
4.
Kodaira  Tsubasa  Waseda  Takuji 《Ocean Dynamics》2019,69(11):1373-1385

The Kuroshio current is well known for generating cold wakes behind islands over Izu Ridge in Northwestern Pacific. Observational data from the geostationary Himawari-8 satellite for 2015–2017 revealed the occurrence of cold waters during the period when the Kuroshio current flows away from the islands. With a focus on tidal currents, this study presents an investigation of dynamical processes responsible for the formation of areas with low sea surface temperature (SST) through the adoption of a high-resolution numerical ocean model for an event that happened in July 2017. Areas with cold water emerged only when tidal currents are included in the numerical model. The model results indicate the cold surface waters are formed in the vicinity of the islands because of upwelling and vertical mixing. Qualitative features of the cold water formation for each island are found to depend on its size, topography, and ambient currents. Near Kozu Island, the tidal excursion is large enough to cause eddy shedding. These shed eddies are stirred by tidal currents to extend the surface cooling effect to wider areas. Near Hachijo Island, a persistent wake is formed by the ambient northward current. Inclusion of tidal currents destabilizes the wake, and consequently leads to the formation of a low SST area, although no clear eddy shedding is detected. The flow patterns around the islands are classified using an additional non-dimensional parameter, defined as the ratio between tidal excursion and island diameter.

  相似文献   
5.
Chemical compositions of materials used for new sample holders (vertically aligned carbon nanotubes [VACNTs] and polyimide film), which were developed for the analysis of Hayabusa2‐return samples, were determined by instrumental neutron activation analysis and/or instrumental photon activation analysis, to estimate contamination effects from the sample holders. The synthetic quartz plate used for the sample holders was also analyzed. Ten elements (Na, Al, Cr, Mn, Fe, Ni, Eu, W, Au, and Th) and 14 elements (Na, Al, K, Sc, Ti, Cr, Zn, Ga, Br, Sb, La, Eu, Ir, and Au) could be detected in the VACNTs and polyimide film, respectively. The VACNT data show that contamination by this material with respect to the Murchison meteorite is negligible in terms of the elemental ratios (e.g., Fe/Mn, Na/Al, and Mn/Cr) used for the classification of meteorites due to the extremely low density of VACNTs. However, for the Au/Cr ratio, even small degrees (1.7 wt%) of contamination by VACNTs will change the Au/Cr ratio. Elemental ratios used for the classification of meteorites are only influenced by large amounts of contamination (>60 wt%) of polyimide film, which is unlikely to occur. In contrast, detectable effects on Ti isotopic compositions are caused by >0.1 and >0.3 wt% contamination by VACNTs and polyimide film, respectively, and Hf isotopic changes are caused by >0.1 wt% contamination by VACNTs. The new sample holders (VACNTs and polyimide film) are suitable for chemical classification of Hayabusa2‐return samples, because of their ease of use, applicability to multiple analytical instruments, and low contamination levels for most elements.  相似文献   
6.
An Active Mass Driver (AMD) system is proposed to suppress actively the response of a building to irregular external excitations such as earthquakes and typhoons.1 This system has been introduced to an actual ten-storey office building constructed in Tokyo in August, 1989. The proposed analytical methods utilize circuits of the system and mechanical characteristics to understand the real control effect of the system. Simulation analyses are also performed to verify the analytical model and the control effect during observed earthquakes.  相似文献   
7.
This paper describes a feasibility study on a high-damping device (HiDAM) installed in a building structure by way of a bracing mechanism. A seismic response analysis with respect to a high-rise building approximately 100 m high is reported. Proper adjustment of the damping coefficient of the HiDAM (oil damper) provided an over all damping factor of about 10–20 per cent to the building structure, and reductions in the response, deformation and shear forces were verified analytically. This paper reports also the performance confirmation tests conducted on a model device of the HiDAM which satisfied the specifications determined from the analytical results. The test results demonstrate the feasibility of the HiDAM and the possibility of utilizing it in high-rise buildings.  相似文献   
8.
A plasmoid may be ejected during a flare and condensed by a radiative instability. The spectral shape of the mean fluxes of Simple 3 (or long-enduring) solar events is interpreted in terms of a thermal emission from this transient condensation in the higher levels of the solar atmosphere. This condensation is thick enough to block the radiation from the underlying S-component. This explanation fits the observed polarization changes, as well as the thermal character of the bursts time profiles. A clue for solar activity forecasting as well as for detailed studies of active sources is indicated.  相似文献   
9.
10.
This paper presents results from a full scale decay test made with a tanker in a relatively protected area in the Brazilian coast. In at least two tests the environmental loads (wind, waves and current) were very small and the time history of the surge motion was well behaved, making it possible to check some proposed models for the damping in the hull and mooring lines. Field data seem to confirm that the damping is indeed of the fluid viscosity type and the theoretical models are able to recover roughly 75% of the observed damping, the energy dissipation in the mooring lines being, by far, the major contribution. The remaining 25% are likely due to non modeled effects, such as the environment influence, which although small and not measured certainly exists, and to the friction between the mooring lines and the seabed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号