首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
大气科学   1篇
地球物理   9篇
地质学   7篇
自然地理   1篇
  2017年   2篇
  2014年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  1999年   2篇
  1997年   1篇
  1989年   1篇
  1982年   1篇
排序方式: 共有18条查询结果,搜索用时 171 毫秒
1.
The conditions under which rear-arc magmas are generated were estimated using primary basalts from the Sannome-gata volcano, located in the rear of the NE Japan arc. Scoriae from the volcano occur with abundant crustal and mantle xenoliths, suggesting that the magma ascended rapidly from the upper mantle. The scoriae show significant variations in their whole-rock compositions (7.9–11.1 wt% MgO). High-MgO scoriae (MgO > ~9.5 wt%) have mostly homogeneous 87Sr/86Sr ratios (0.70318–0.70320), whereas low-MgO scoriae (MgO < ~9 wt%) have higher 87Sr/86Sr ratios (>0.70327); ratios tend to increase with decreasing MgO content. The high-MgO scoriae are aphyric, containing ~5 vol% olivine microphenocrysts with Mg# [100 × Mg/(Mg + Fe2+)] of up to 90. In contrast, the low-MgO scoriae have crustal xenocrysts of plagioclase, alkali feldspar, and quartz, and the mineralogic modes correlate negatively with whole-rock MgO content. On the basis of these observations, it is inferred that the high-MgO scoriae represent primary or near-primary melts, while the low-MgO scoriae underwent considerable interaction with the crust. Using thermodynamic analysis of the observed petrological features of the high-MgO scoriae, the eruption temperature of the magmas was constrained to 1,160–1,220 °C. Given that the source mantle was depleted MORB-source mantle, the primary magma was plausibly generated by ~7 % melting of a garnet-bearing spinel peridotite; taking this into consideration, and considering the constraints of multi-component thermodynamics, we estimated that the primary Sannome-gata magma was generated in the source mantle with 0.5–0.6 wt% H2O at 1,220–1,230 °C and at ~1.8 GPa, and that the H2O content of the primary magma was 6–7 wt%. The rear-arc Sannome-gata magma was generated by a lower degree of melting of the mantle at greater depths and lower temperatures than the frontal-arc magma from the Iwate volcano, which was also estimated to be generated by ~15 % melting of the source mantle with 0.6–0.7 wt% H2O at ~1,250 °C and at ~1.3 GPa.  相似文献   
2.
Nutrient interleaving below the mixed layer of the Kuroshio Extension Front   总被引:1,自引:1,他引:0  
Nitrate interleaving structures were observed below the mixed layer during a cruise to the Kuroshio Extension in October 2009. In this paper, we investigate the formation mechanisms for these vertical nitrate anomalies, which may be an important source of nitrate to the oligotrphoc surface waters south of the Kuroshio Extension Front. We found that nitrate concentrations below the main stream of the Kuroshio Extension were elevated compared to the ambient water of the same density (σ ?? = 23.5–25). This appears to be analogous to the “nutrient stream” below the mixed layer, associated with the Gulf Stream. Strong turbulence was observed above the vertical nitrate anomaly, and we found that this can drive a large vertical turbulent nitrate flux \(>\mathcal {O}\) (1 mmol N m?2 day?1). A realistic, high-resolution (2 km) numerical simulation reproduces the observed Kuroshio nutrient stream and nitrate interleaving structures, with similar lateral and vertical scales. The model results suggest that the nitrate interleaving structures are first generated at the western side of the meander crest on the south side of the Kuroshio Extension, where the southern tip of the mixed layer front is under frontogenesis. Lagrangian analyses reveal that the vertical shear of geostrophic and subinertial ageostrophic flow below the mixed layer tilts the existing along-isopycnal nitrate gradient of the Kuroshio nutrient stream to form nitrate interleaving structures. This study suggests that the multi-scale combination of (i) the lateral stirring of the Kuroshio nutrient stream by developed mixed layer fronts during fall to winter, (ii) the associated tilting of along-isopycnal nitrate gradient of the nutrient stream by subinertial shear, which forms vertical interleaving structures, and (iii) the strong turbulent diffusion above them, may provide a route to supply nutrients to oligotrophic surface waters on the south side of the Kuroshio Extension.  相似文献   
3.
Internal differentiation processes in a solidifying lava flow were investigated for the Kutsugata lava flow from Rishiri Volcano in northern Japan. In a representative 6-m thick lava flow that was investigated in detail in this study, segregation products darker than the host lavas manifested mainly in the form of pipes (vesicle cylinders) and layers (vesicle sheets), occurring around 0.5–2.3 m and 2.0–4.0 m above the base, respectively. Both the cylinders and sheets are significantly richer in incompatible elements such as TiO2 and K2O than the host lavas, which suggest that these products essentially represent residual melt produced during solidification of the lava flow. Field observation and the geochemical features of the lavas suggest that the vesicle cylinders grew upward from near the base of the flow by continuous feeding of residual melt from the neighboring host lavas to the heads of the cylinders. On the other hand, the vesicle sheets were produced in situ in the solidifying lava flow as fracture veins caused by horizontal compression. The vesicle cylinders have a remarkably higher MgO content (up to 8 wt.%) than the host lava (< 6 wt.%), whereas the vesicle sheets display MgO depletion (as low as 3.5 wt.%). The relatively high MgO content of the vesicle cylinders cannot be explained solely by the mechanical mixing of olivine phenocrysts with the residual melt. It is suggested that the vesicle cylinders were produced by the extraction of olivine-bearing interstitial melt from an augite-plagioclase network in the host lava, whereas the vesicle sheets were formed by the migration of the residual melt from a crystal network consisting of plagioclase, augite, and olivine in the host lava into platy fractures. We infer that this selective crystal fractionation for forming the vesicle cylinders resulted from processes in which abundant vesicles rejected from the upward-migrating floor solidification front prevented olivine crystals from being incorporated into the crystal network in the host lava. The vesicle cylinders are considered to have formed in ∼ 1 day after the lava flow came to rest, while relatively large vesicle sheets (> 1 cm thick) appeared much later (after ∼ 9 days). The formation of these segregation products was essentially complete within 20 days after the lava emplacement.  相似文献   
4.
The Miocene northeast Honshu magmatic arc, Japan, formed at a terrestrial continental margin via a stage of spreading in a back‐arc basin (23–17 Ma) followed by multiple stages of submarine rifting (19–13 Ma). The Kuroko deposits formed during this period, with most forming during the youngest rifting stage. The mode of magma eruption changed from submarine basalt lava flows during back‐arc basin spreading to submarine bimodal basalt lava flows and abundant rhyolitic effusive rocks during the rifting stage. The basalts produced during the stage of back‐arc basin spreading are geochemically similar to mid‐ocean ridge basalt, with a depleted Sr–Nd mantle source, whereas those produced during the rifting stage possess arc signatures with an enriched mantle source. The Nb/Zr ratios of the volcanic rocks show an increase over time, indicating a temporal increase in the fertility of the source. The Nb/Zr ratios are similar in basalts and rhyolites from a given rift zone, whereas the Nd isotopic compositions of the rhyolites are less radiogenic than those of the basalts. These data suggest that the rhyolites were derived from a basaltic magma via crystal fractionation and crustal assimilation. The rhyolites associated with the Kuroko deposits are aphyric and have higher concentrations of incompatible elements than do post‐Kuroko quartz‐phyric rhyolites. These observations suggest that the aphyric rhyolite magma was derived from a relatively deep magma chamber with strong fractional crystallization. Almost all of the Kuroko deposits formed in close temporal relation to the aphyric rhyolite indicating a genetic link between the Kuroko deposits and highly differentiated rhyolitic magma.  相似文献   
5.
Abstract Nekoma volcano forms part of the arc axis volcanic array of the North-eastern Honshu arc, Japan, which is commonly characterized by medium-K lava suites. However, Nekoma is exceptional because many of its lavas are low-K. This anomaly has been a matter of debate. Nekoma was active from 1.1 to 0.35 Ma. The volcano consists of thick andesite flows and domes associated with block and ash flow deposits produced during lava dome formation. A horseshoe-shaped collapse caldera was formed at the summit and small lava domes extruded into the caldera. Stratigraphy, published K–Ar ages, and tephrochronology define three stages of volcanic activity, about 1.1 Ma (Stage 1), 0.8–0.6 Ma (Stage 2) and 0.45–0.35 Ma (Stage 3; post caldera stage). Low-K andesites occur in all stages. Extremely low-K andesite was also associated in Stage 2 and medium-K andesite was dominant in Stage 3. In general, lavas changed from low-K to medium-K after caldera formation. Geochemical study of the Nekoma lavas shows that both low-K and medium-K lavas are isotopically similar and were derived from a common source. Adatara and Azuma volcanoes, which lie close to Nekoma, also have both low-K and medium-K andesites. However, Sr isotope ratios or temporal-spatial variations in K-level lava classification vary between the three centers. Comparisons of K suites and Sr isotope ratios with frontal arc volcanoes in North-east–Honshu suggest source heterogeneity existed in both medium- and low-K suites. The K contents of lavas and their Sr isotopes are not simply related. This requires re-examination of models for chemical variation of andesites in arcs.  相似文献   
6.
Ti-rich hydroandradite often occurs, though usually as a minor constituent, in serpentinized ultramafic rocks and associated gabbroic rocks of the Sanbagawa metamorphic belt. The chemistry of the host rocks is commonly characterized by undersaturation with SiO2. Two Ti-rich hydroandradites from metasomatized gabbroic rocks of the Shibukawa area have been chemically analysed by the wet method. Mössbauer experiments indicate the presence of Fe3+ and Fe2+ in the octahedral sites of these Ti-rich hydroandradites. Wet chemical analyses for total reducing capacity of the present garnets by two different methods together with Mössbauer data imply the presence of octahedral Ti3+ in their structure. Ti-rich hydroandratites, apart from their hydrous property, have a similar crystal chemistry to natural Ti-rich andradites. Ti-rich hydroandradites were probably formed in rocks with unusual chemical compositions within a P-T region of 300–400° C and 4–7 kb under limited conditions of relatively low oxygen fugacity and low μCO2.  相似文献   
7.
Abstract ' In situ basalts' represent the ridge magmatism at and close to the ancient trench-trench-ridge triple junction. Such basalts in the Amami, Mugi, and Setogawa accretionary complexes, Southwest Japan, were described and analysed. The geochemical data show that the ' in situ basalts' include all the types of basalts, ranging from alkali basalts and high-alumina basalts to tholeiites, and the compositions tend towards intermediate and silicic rocks. The data also reveal that the ridge basalts are indistinguishable both from the island arc and intraplate basalts, no affinities with mid-ocean-ridge basalts. The sub-ridge mantle adjacent to the triple junction had a component of sub-arc mantle, and this mantle heterogeneity can be generated by the formation of a slab window.  相似文献   
8.
The water content of low-K tholeiitic basalt magma from Iwate volcano, which is located on the volcanic front of the NE Japan arc, was estimated using multi-component thermodynamic models. The Iwate lavas are moderately porphyritic, consisting of ~8 vol.% olivine and ~20 vol.% plagioclase phenocrysts. The olivine and plagioclase phenocrysts show significant compositional variations, and the Mg# of olivine phenocrysts (Mg#78–85) correlates positively with the An content of coexisting plagioclase phenocrysts (An85–92). The olivine phenocrysts with Mg# > ~82 do not form crystal aggregates with plagioclase phenocrysts. It is inferred from these observations that the phenocrysts with variable compositions were primarily derived from mushy boundary layers along the walls of a magma chamber. By using thermodynamic calculations with the observed petrological features of the lavas, the water content of the Iwate magma was estimated to be 4–5 wt.%. The high water content of the magma supports the recent consensus that frontal-arc magmas are remarkably hydrous. Using the estimated water content of the Iwate magma, the water content and temperature of the source mantle were estimated. Given that the Iwate magma was derived from a primary magma solely by olivine fractionation, the water content and temperature were estimated to be ~0.7 wt.% and ~1,310 °C, respectively. Differentiation mechanisms of low-K frontal-arc basalt magmas were also examined by application of a thermodynamics-based mass balance model to the Iwate magma. It is suggested that magmatic differentiation proceeds primarily through fractionation of crystals from the main molten part of a magma chamber when it is located at <~200 MPa, whereas magma evolves through a convective melt exchange between the main magma and mushy boundary layers when the magma body is located at >~200 MPa.  相似文献   
9.
Abstract. Kuroko deposits are a representative volcanic‐hosted massive sulfide deposit and the Hokuroku district is economically the most important Kuroko containing province in Japan. There are two cycles of the bimodal volcanic sequence in the Hokuroku district. The pre‐ore volcanism started with basaltic activity and was followed by intensive felsic hyaloclas‐tic activity under bathyal conditions. The post‐ore sequence also began with basaltic activity intercalated with mudstone and was followed by alternating beds of pumice tuff with several lava flows and mudstone. Kuroko deposits are situated in the final period of the pre‐ore felsic volcanic sequence of the first bimodal volcanic cycle. Based on a detailed investigation of existing age data, it was concluded that the felsic volcanic sequences in the pre‐and post‐Kuroko formation can be divided into a pre‐ore dacite group (16–13.5 Ma), a D2 dacite group (lower unit of the post‐ore volcanic sequence, 12.7±0.6~ ll Ma) and a Dl dacite group (upper unit of the post‐ore sequence including quartz‐porphyry and granitoid, 11sim;10 Ma) in ascending order. Field and microscopic observations show that the pre‐ore dacite is characterized by aphyric to plagioclase‐phyric lava and the post‐ore dacitic rocks are characterized by quartz‐plagioclase‐phyric aphanitic lava and dome. These three dacite groups are petrochemically discriminated by SiO2‐Al2O3 and CaO‐TiO2 diagrams, excluding altered specimens. The distribution of the normative compositions on the Q‐An‐Ab‐Or diagram suggests that the pre‐ore dacites trend on the 5 kb cotectic line (equilibrated to 10—15 km deep) and those of the post‐ore trend along the 1 kb line (a few km deep). The secular variation of the major elements indicates that the rhyolitic members genetically related to the Kuroko formation could be the most differentiated products in the pre‐ore felsic volcanism. The distribution of Nb against SiO2 content in the pre‐ and post‐ore bimodal volcanic cycles indicates that these two volcanisms could have been generated by different magmatic origins. The difference would have been caused by the tectonic conversion from a back‐arc to an island‐arc setting.  相似文献   
10.
Stratigraphic and geochronological data show that the late Cenozoic Ueno Basalts and related Nomugi-Toge and Hida volcanic suites of the Norikura Volcanic Chain, Japan, were active for ~ 1 million years. Temporal and spatial variations of the volcanic activity and chemistry of the volcanic products suggest that it was induced by a common mantle diapir. The Ueno Basalts are small monogenetic volcanoes scattered over an area 50 km in diameter, and comprise a small volcanic province. The Ueno Basalts are almost all subalkalic basalt to basaltic andesite, erupted through the late Pliocene to the earliest Pleistocene (2.7–1.5 Ma). Andesite to dacite of the Nomugi-Toge volcanic rocks were concurrently active in the back arc side, and two eruption stages (2.6–2.2 and 2.1–1.7 Ma) are recognizable. Two voluminous dacite and rhyolite ignimbrites, the Hida Volcanic Rocks, were erupted deeper in the back-arc region, at ca 1.75 and 1.7 Ma. Both the Nomugi-Toge and Hida suites are also subalkalic, except for the last ignimbrite. In the Ueno Basalts, alkali olivine basalt was erupted in the earliest stage, and was followed by subalkalic basalt, showing that the magma segregation depth ascended with time. This coincided with uplift of the volcanic province and with quasi-concentric expansion of the eruption centers, suggesting that an upwelling mantle diapir was the cause of the volcanism. The Nomugi-Toge andesite–dacite lavas and the Hida dacite and rhyolite ignimbrites are considered to have originated from the same mantle diapir, because of their close proximity to the Ueno Basalts and their near-contemporaneous activity. Mantle diapirs have a significant role in the origin of subalkalic volcanic rocks in the island arcs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号