首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   1篇
  国内免费   1篇
大气科学   2篇
地球物理   34篇
地质学   17篇
海洋学   1篇
天文学   10篇
自然地理   1篇
  2021年   1篇
  2020年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2011年   2篇
  2010年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1993年   1篇
  1992年   2篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1977年   2篇
  1976年   3篇
  1974年   2篇
  1973年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1962年   1篇
  1960年   2篇
排序方式: 共有65条查询结果,搜索用时 31 毫秒
1.
Evolution of sedimentary systems at large temporal and spatial scales cannot be scaled down to laboratory dimensions by conventional hydraulic Froude scaling. Therefore, many researchers question the validity of experiments aiming to simulate this evolution. Yet, it has been shown that laboratory experiments yield stratigraphic responses to allocyclic forcing that are remarkably similar to those in real‐world prototypes, hinting at scale independency with strong dependence on boundary conditions but weak dependence on the actual sediment transport dynamics. This paper addresses the dilemma by contrasting sediment transport rules that apply in the laboratory with those that apply in real‐world geological systems. It is demonstrated that the generation of two‐dimensional stratigraphy in a flume can be simulated numerically by the non‐linear diffusion equation. Sediment transport theory is used to demonstrate that only suspension‐dominated meandering rivers should be simulated with linear diffusion. With increasing grain‐size (coarse sand to gravel) and shallowness of river systems, the prediction of long‐term transport must be simulated by non‐linear, slope‐dependent diffusion to allow for increasing transport rates and thus change in stratigraphic style. To point out these differences in stratigraphic style, three stages in infill of accommodation have been defined here: (i) a start‐up stage, when the system is prograding to base level (e.g. the shelf edge) with no sediment flux beyond the base‐level point; (ii) a fill‐up stage, when the system is further aggrading while progressively more sediment is bypassing base level with the progression of the infill; and (iii) a keep‐up stage, when more than 90% of the input is bypassing the base level and less than 10% is used for filling the accommodation. By plotting the rate of change in flux for various degrees of non‐linearity (varying the exponent in the diffusion equation) it was found that the error between model and real‐world prototype is largest for the suspension‐dominated prototypes, although never more than 30% and only at the beginning of the fill‐up stage. The error reduces to only 10% for the non‐linear sandy‐gravelly and gravelly systems. These results are very encouraging and open up ways to calibrate numerical models of sedimentary system evolution by such experiments.  相似文献   
2.
The caldera of Santorini is a composite structure with a subsidence history extending over 100 ka or more. Geomorphological mapping shows that the present-day caldera wall is a complex assemblage of cliff surfaces of different ages, and that collapse at Santorini has repeatedly exhumed earlier caldera cliffs and unconformities. Cliffs bounding the southern, southeastern and northwestern rims of the caldera are morphologically fresh and probably formed during or soon after the Minoan eruption in the late Bronze Age. The well-scalloped shape of these cliffs is attributed to large-scale rotational landslip around the margins of the Minoan caldera. The deposit from one landslip is preserved subaerially. Minoan landslips in southeast santorini detached along the basement unconformity, exposing a cliff of the prevolcanic island. The caldera wall in the north, northeast and east preserves evidence for three generations of cliff: those of Minoan age and two earlier generations of caldera wall. The two early calderas can be dated relative to a well-established statigraphy of lavas and tuffs. The presence of in situ Minoan tephra plastered onto the present-day caldera wall provides evidence that these ancient caldera cliffs had already been exhumed prior to the Minoan eruption. Field relationships permit reconstruction of the physiography of Bronze-Age Santorini immediately before the Minoan eruption. The reconstruction differs from some previously published versions and is believed to be the most accurate to date. Bronze-Age Sa ntorini had a large flooded caldera formed 21 ka ago. This caldera must have acted as an excellent harbour for the Bronze-Age inhabitants of the island. The 3.6 ka Minoan eruption deepened and widened the extant caldera. The volume of Minoan collapse (25 km3) is in good agreement with published estimates for the volume of discharged magma if between 5 and 8 km3 of Minoan ignimbrite ponded as intracaldera tuff.  相似文献   
3.
Abstract Analogue flume experiments were conducted to investigate the transport and sedimentation behaviour of turbulent pyroclastic density currents. The experimental currents were scaled approximately to the natural environment in three ways: (1) they were fully turbulent; (2) they had a very wide range of particle sizes and associated Rouse numbers (the ratio of particle settling velocity to effective turbulent eddy velocity in the current); and (3) they contained particles of two different densities. Two sets of surge‐type experiments were conducted in a 5 m long, water‐filled lock‐exchange flume at five different volumetric particle concentrations from 0·6% to 23%. In one set (one‐component experiments), the currents contained just dense particles; in the other set (two‐component experiments), they contained both light and dense particles in equal volume proportions. In both sets of experiments, the population of each component had a log‐normal size distribution. In the two‐component experiments, the size range of the light particle population was selected in order to be in hydrodynamic equivalence with that of the dense particles. Dense particles were normally graded, both vertically and downstream, in the deposits from both sets of experiments. The mass loading (normalized to the initial mass of the suspension) and grain size of the dense component in the deposits decreased with distance from the reservoir and were insensitive to initial total particle concentration in the currents. On the other hand, in the two‐component experiments, the light particles were extremely sensitive to concentration. They were deposited in hydrodynamic equivalence with the dense particles from dilute currents, but were segregated efficiently at concentrations higher than a few per cent. With increasing particle concentration, the large, light particles were carried progressively further down the flume because of buoyancy effects. Deposits from the high‐concentration currents exhibited reverse vertical grading of the large, light particles. Efficient segregation of the light component was observed even if the bulk density of the current was less than that of the light particles. In both sets of experiments, marked inflexions in the rate of downstream decline in mass loading and maximum grain size of the dense component can be attributed to the presence of two different particle settling regimes in the flow: (1) particles with Rouse numbers >2·5, which did not respond to the turbulence and settled rapidly; and (2) particles with Rouse numbers <2·5, which followed the turbulent eddies and settled slowly. The results are applied to the transport and sedimentation dynamics of pyroclastic density currents that generate large, widespread ignimbrites. Field data fail to reveal significant departures from aerodynamic equivalence between pumice and lithic clasts in three such ignimbrites: the particulate loads of some large ignimbrites are transported principally in turbulent suspensions of low concentration. In some ignimbrites, the well‐developed inflexions in curves of maximum lithic (ML) size vs. distance can be attributed to the existence of distinct high and low Rouse number particle settling regimes that mark the transition from an overcharged state to one in which the residual particulate load is transported more effectively by turbulence.  相似文献   
4.
Formenti  Y.  Druitt  T. H.  Kelfoun  K. 《Bulletin of Volcanology》2003,65(8):587-605
The activity of Convention at Montserrat Soufrière Hills Volcano, Montserrat, during the period 1995–1999 included numerous violent explosions. Two major cycles of Vulcanian explosions occurred in 1997: a first of 13 explosions between 4 and 12 August and a second of 75 between 22 September and 21 October. The explosions were short-lived events lasting a few tens of seconds during which partial fountain collapse generated pyroclastic surges and pyroclastic flows, and buoyant plumes ascended 3–15 km into the atmosphere. Each explosion discharged on average 3×105 m3 (dense-rock equivalent, DRE) of magma, draining the conduit to depths of 1–2 km. The paper focuses on the first few seconds of three explosions of the 75 that occurred in September/October 1997: 6 October 1997 at 17:50, 7 October 1997 at 16:02 and 9 October 1997 at 12:32. Physical parameters such as exit velocities, magmatic water contents and magma pressures at fragmentation are estimated by following and modelling the ascent of individual momentum-dominated finger jets visible on videos during the initial stages of each explosion. The model treats each finger jet as an incompressible flow sustained by a steady flux of gas and particles during the few seconds of ascent, and produces results that compare favourably with those using a multiphase compressible code run using similar eruptive parameters. Each explosion reveals a progressive increase in eruptive intensity with time, jet exit velocities increasing from 40 m s–1 at the beginning of the explosion up to 140 m s–1 after a few seconds. Modelling suggests that the first magma to exit was largely degassed, whereas that discharged after a few seconds contained up to 2 wt% water. Magma overpressures up to ~10 MPa are estimated to have existed in the conduit immediately prior to each explosion. Progressive increases in jet exit velocity with time over the first few seconds of each explosion provide direct evidence for strong pre-eruptive gradients in water content and magma pressure in the upper reaches (probably 100–500 m) of the conduit. Fountain collapse occurred during the first 10–20 s of each explosion because the discharging jets had bulk densities up to 100 times that of the atmosphere and were unable to entrain enough air to become buoyant. Such high eruptive densities were due to the presence of partially degassed magma in the conduit.Editorial responsibility: A. Woods  相似文献   
5.
During SESAME phase I ground-based FTIR measurements were performed atEsrange near Kiruna, Sweden, from 28 January to 26 March 1994. Zenith columnamounts of ClONO2, HCl, HF, HNO3,O3, N2O, CH4, and CFC-12 werederived from solar absorption spectra. Time series of ClONO2and HCl indicate a chlorine activation at the end of January and around 1March. On 1 March a very low amount of HCl of 2.09times; 1015molec. cm-2 was detected, probably caused by a second chlorineactivation phase starting from an already decreased amount of HCl. The ratioof column amounts of HCl to ClONO2 decreased inside the vortexfrom about 1 in January to 0.4 in late March compared to values of about 2outside the vortex. Although the Arctic stratosphere was rather warm in winter1993/94 and PSCs occurred seldom, chlorine partitioning into its reservoirspecies HCl and ClONO2 changed during that winter andClONO2 is the major chlorine reservoir at the end of thewinter as in cold winters like 1991/92 and 1994/95.  相似文献   
6.
Tephra layers with Icelandic provenance have been identified across the North Atlantic region in terrestrial, lacustrine, marine and glacial environments. These tephra layers are used as marker horizons in tephrochronology including climate studies, archaeology and environmental change. The major element chemistries of 19 proximally deposited Holocene Icelandic silicic tephra layers confirm that individual volcanic systems have unique geochemical signatures and that eruptions from the same system can often be distinguished. In addition, glass trace element chemistry highlights subtle geochemical variations between tephra layers which appear to have identical major element chemistry and thus allows for the identification of some, if not all, tephra layers previously considered identical in composition. This paper catalogues the compositional variation between the widespread Holocene Icelandic silicic tephra deposits.  相似文献   
7.
An explanation for filaments inclined to the galactic plane observed in the next-inner spiral-arm is sought in terms of self-consistent z-oscillations. These filaments or „shingles”︁ are observed to be ˜ 1.4 kpc long, 70 pc thick and inclined to the plane by ˜ 12°. In a collisionless axi-symmetric stellar system we simplify the BOLTZMANN and POISSON equations by assuming a constant density normal to the galactic plane up to z ≈︂ 200 pc and by assuming a constant radial component of the spatial coordinates. The condition for selfconsistency in the linear approximation results in shingles 1.3 kpc long, inclined to the plane by 17°. The length of the shingles is independent of the radial distance R from the centre and the inclination depends inversely on R as is observed.  相似文献   
8.
Three-dimensional seismic surveys, in general, do not need the same high degree of CDP coverage as 2-D surveys to achieve a certain signal-to-noise ratio after migration. This can be shown theoretically for Kirchhoff migration and laterally uncorrelated noise. More precisely, there exists a formal relationship between the multiplicity of CDP coverage of a 3-D survey and that of a 2-D survey with the same signal-to-uncorrelated-noise ratio. Frequency and aperture are parameters in the corresponding expression. Heuristically the relationship can be obtained by applying the concept of the Fresnel zone. Though the mathematics in this paper refer to laterally uncorrelated noise, the underlying concepts can probably also be used for weakly correlated noise, e.g., for multiple reflections and for the low-frequency remnants of surface waves.  相似文献   
9.
A considerable part of the nephelinite lavas of the volcanoMt. Nyiragongo in the eastern Belgian Congo contains kalsiliteas one of the main constituents. The mineral never occurs asthe only feldspathoid of the rock but is accompanied by nepheline,abundant melilite, and, sometimes, by small to moderate amountsof leucite. Other important constituents of these kalsilite-bearingrocks are clinopyroxene, olivine, perovskite, titanomagnetite,sodalite, &c. The feldspars are lacking. Kalsilite occurs both as complex nepheline-kalsilite phenocrystsin which these phases are strictly co-axial and in the fine-grainedgroundmass as grains separate from those of nepheline. The complex nepheline-kalsilite phenocrysts exhibit a continuousseries of progressing exsolution schematically presented inFig. 5. The series begins with a perthite-like nepheline-kalsilitecore surrounded by a drop-like development of nepheline in themargin of the crystal and ends up with a homogeneous kalsilitecore surrounded by a nepheline margin. The complex phenocrysts occur mostly as aggregates causing atypically glomeroporphyritic texture. Evidence is presentedindicating that, in the very first stages of crystallization,some of the Nyiragongo lavas are able to precipitate small amountsof phenocrysts of approximate composition K3NaAl4Si4O16. Throughcrystal-rise under turbulent currents in the molten lava massthese phenocrysts have been accumulated into aggregates andthus have been preserved until extrusion. Granted sufficientlyslow cooling under static conditions, the phenocrysts wouldhave reacted with the molten lava. The roles of the crystal-riseand of the turbulent currents in lava are illustrated by theoccurrence of the ‘giant’ leucite aggregates foundin the inner walls of the crater and by observations on thelava lake of the mountain. The occurrence of kalsilite in the groundmass is explained bythe existence of a two-phase area in the sub-solidus range inthe nepheline-kalsilite system. The Nepheline Aggregate lavas represent the last extrusionsemitted by the Nyiragongo main crater. The nepheline phenocrystscharacteristic of these lavas range considerably higher in potassiumcontent than the nephelines found in other Nyiragongo flows.The crystals are slightly zoned with a large potassium-richcore coated by a narrow margin with gradually decreasing potassiumcontent. The zoning may be detected only by using special methods.The history of crystallization of the nepheline phenocrystsis considered analogous to that of the complex nepheline-kalsilitephenocrysts with the only difference that the nepheline phenocrystsof the Nepheline Aggregate lavas are less rich in potassiumand, consequently, have not been subjected to exsolution.  相似文献   
10.
A considerable part of the nephelinite lavas of the volcanoMt. Nyiragongo in the eastern Belgian Congo contains kalsiliteas one of the main constituents. The mineral never occurs asthe only feldspathoid of the rock but is accompanied by nepheline,abundant melilite, and, sometimes, by small to moderate amountsof leucite. Other important constituents of these kalsilite-bearingrocks are clinopyroxene, olivine, perovskite, titanomagnetite,sodalite, &c. The feldspars are lacking. Kalsilite occurs both as complex nepheline-kalsilite phenocrystsin which these phases are strictly co-axial and in the fine-grainedgroundmass as grains separate from those of nephe-line. The complex nepheline-kalsilite phenocrysts exhibit a continuousseries of progressing exsolution schematically presented inFig. 5. The series begins with a perthite-like nepheline-kalsilitecore surrounded by a drop-like development of nepheline in themargin of the crystal and ends up with a homogeneous kalsilitecore surrounded by a nepheline margin. The complex phenocrysts occur mostly as aggregates causing atypically glomeroporphyritic texture. Evidence is presentedindicating that, in the very first stages of crystallization,some of the Nyiragongo lavas are able to precipitate small amountsof phenocrysts of approximate composition K3NaAl4Si4O16. Throughcrystal-rise under turbulent currents in the molten lava massthese phenocrysts have been accumulated into aggregates andthus have been preserved until extrusion. Granted sufficientlyslow cooling under static conditions, the phenocrysts wouldhave reacted with the molten lava. The roles of the crystal-riseand of the turbulent currents in lava are illustrated by theoccurrence of the ‘giant’ leucite aggregates foundin the inner walls of the crater and by observations on thelava lake of the mountain. The occurrence of kalsilite in the groundmass is explained bythe existence of a two-phase area in the sub-solidus range inthe nepheline-kalsilite system. The Nepheline Aggregate lavas represent the last extrusionsemitted by the Nyiragongo main crater. The nepheline phenocrystscharacteristic of these lavas range considerably higher in potassiumcontent than the nephelines found in other Nyiragongo flows.The crystals are slightly zoned with a large potassium-richcore coated by a narrow margin with gradually decreasing potassiumcontent. The zoning may be detected only by using special methods.The history of crystallization of the nepheline phenocrystsis considered analogous to that of the complex nepheline-kalsilitephenocrysts with the only difference that the nephe-line phenocrystsof the Nepheline Aggregate lavas are less rich in potassiumand, consequently, have not been subjected to exsolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号