首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   2篇
地质学   2篇
  2012年   1篇
  2011年   1篇
  2007年   1篇
  1996年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Non-linear response of the soil is investigated by comparing the spectral ratios (uphole/downhole) using weak and strong motions. Data from seven vertical arrays in Japan are analysed in this study. The frequency-dependent transfer function of soil is calculated as a ratio of the spectrum at uphole to the spectrum at downhole, considering the horizontal component of shear wave. In spectral ratio analysis auto- and cross-spectra are employed. The reduction in the predominant frequency of the transfer function with increases in excitation level reflects the non-linear response of the soil. Results of analysis demonstrate a significant non-linear ground response at six sites with surface PGA exceeding 90 gal. However, the results of one site show the linear response up to 130 gal surface PGA. Furthermore, the in situ strain-dependent soil behaviour is examined through the shear modulus – shear strain relationship. When compared, the actual and laboratory results of the shear strain – shear modulus relationship are in agreement. Additionally, a good consistency between the tendency of reduction in shear modulus ratio with shear strain increases, and reduction of predominant frequency with ground motion increases, confirms the significance of non-linearity in site effects study.  相似文献   
2.
The Archean (2.8 Ga) Banded Iron Formation (BIF) of the Bell Lake region of Yellowknife greenstone belt, Canada is recrystallized to metamorphic assemblages of the amphibolite facies. This BIF is characterized by centimetre‐scale Fe‐rich and Si‐rich mesobands. In the Si‐rich mesobands, thin layers of magnetite microbands are developed in a quartz matrix. The Fe‐rich mesobands are composed mainly of Ca‐amphibole (hornblende), Fe–Mg amphibole (grunerite), and magnetite. The metamorphic foliation locally cuts across the mesoband boundaries, indicating the mesobanding was formed prior to peak metamorphism. Variations in mineral modal proportions between Fe‐rich mesobands and microbands are diagnostic of depositional compositional differences between beds. Micro‐X‐ray fluorescence imaging reveals metamorphic differentiation within Fe‐rich mesobands, with segregation of Fe–Mg amphibole, and the incompatible element Mn is concentrated at the margins of the Fe‐rich mesobands during the amphibole‐forming reactions. Ti was relatively immobile during metamorphic segregation and its distribution provides a record of the original structures in the Fe‐rich mesobands.  相似文献   
3.
Combined petrographic, structural and geochronological study of the Malashan dome, one of the North Himalayan gneiss domes, reveals that it is cored by a Miocene granite, the Malashan granite, that intruded into the Jurassic sedimentary rocks of Tethys Himalaya. Two other granites in the area are referred to as the Paiku and Cuobu granites. New zircon SHRIMP U-Pb and muscovite and biotite 40Ar-39Ar dating show that the Paiku granite was emplaced during 22.2–16.2 Ma (average 19.3 ± 3.9 Ma) and cooled rapidly to 350–400 °C at around 15.9 Ma. Whole-rock granite chemistry suggests the original granitic magma may have formed by muscovite dehydration melting of a protolith chemically similar to the High Himalayan Crystalline Sequence. Abundant calcareous metasedimentary rocks and minor garnet-staurolite-biotite-muscovite ± andalusite schists record contact metamorphism by three granites that intruded intermittently into the Jurassic sediments between 18.5 and 15.3 Ma. Two stages of widespread penetrative ductile deformation, D1 and D2, can be defined. Microstructural studies of metapelites combined with geothermobarometry and pseudosection analyses yield P – T conditions of 4.8 ± 0.8 kbar at 550 ± 50 °C during a non-deformational stage between D1 and D2, and 3.1–4.1 kbar at 530–575 °C during syn- to post-D2. The pressure estimates for the syn- to post-D2 growth of andalusite suggest relatively shallow (depth of ∼15.2 km) extensional ductile deformation that took place within a shear zone of the South Tibetan Detachment System. Close temporal association between intrusion of the Malashan granite and onset of D2 suggests extension may have been triggered by the intrusion of the Malashan granite.  相似文献   
4.
Chemical Th–U–total Pb isochron method (CHIME) monazite dating was carried out for pelitic–psammitic migmatites and the Ao granite (one of the Younger Ryoke granites) from the Aoyama area, Ryoke metamorphic belt, Southwest Japan. The Ao granite gives an unequivocal age of 79.8 ± 3.9 Ma. The monazite grains in migmatites yield an age of 96.5 ± 1.9 Ma with rims and patchy domains of 83.5 ± 2.4 Ma. The 83.5 ± 2.4‐Ma overprinting on migmatites over the garnet–cordierite zone suggests a wide and combined effect of thermal input and fluid activity on the monazite grains caused by the contact metamorphism by the Younger Ryoke granites including the Ao granite. This contact metamorphism has not been detected from the major metamorphic mineral assemblage previously, possibly because the migmatites already possessed the high‐temperature mineral assemblage before the granite intrusions and were immune from contact metamorphism in terms of major metamorphic minerals. However, monazite records contact metamorphism clearly. Therefore, the field mapping of the CHIME monazite age is a powerful tool for recognition of polymetamorphism in high‐temperature metamorphic terrains where later thermal effects can not be easily detected by the growth of new major metamorphic minerals.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号