首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
测绘学   1篇
大气科学   5篇
地球物理   2篇
地质学   3篇
海洋学   1篇
  2023年   1篇
  2020年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  1986年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
2.
3.
A multivariate statistical analysis was carried out with log-transformed values of Cu, Ni, Co, Pb, Zn, Ag, Cr, Mn, Ca, and Sr in several sets of samples collected across the mineralized base metal zone in sheared soda granite, feldspathic schist, and chlorite schist from the central section of Mosaboni Mine of the famous Singhbhum Copper Belt of eastern India. Linear correlation coefficient matrices of two sets of ore samples (>0.5% Cu)—one from levels 18 and 21 and the other from levels 25 and 28—indicate two well-defined and distinct clusters comprising Cu, Ni, Co, Pb, and Zn on one hand and Ca, Sr, and Mn on the other. Varimax-rotatedR-mode factor analysis of two above-noted sample sets, taken along with available geologic information, indicates that over 80% of the variability in data matrices for 9–10 elements can be accounted for by four distinct processes: (a) an early phase of copper mineralization which apparently replaced Mn, Ca, and Sr in the host rock; (b) a silicate-cum-oxide phase of crystallization/recrystallization of host rock; (c) remobilization of sulfide-forming ore elements (Cu, Ni, Co, Pb, and Zn); and (d) a phase of mineralization of Ag which appears to have replaced Cr, Ca and Cu. Process (c) was quantitatively most important. Factor score studies are suggestive of preferred introduction of Ni, Co, Pb, and Zn along central parts of preexisting copper-mineralized zones.  相似文献   
4.
Indian Ocean and monsoon coupled interactions in a warming environment   总被引:1,自引:0,他引:1  
Several studies have drawn attention to the steady warming of the equatorial and tropical Indian Ocean (IO) sea surface temperature (SST) observed during recent decades. An intriguing aspect of the IO SST warming trend is that it is has been accompanied by a pronounced weakening of the large-scale boreal summer monsoon circulation. Based on a detailed diagnostic analysis of observed datasets, reanalysis products and IPCC AR4 coupled model output, this study examines how the observed changes in the summer monsoon circulation could have contributed to this SST warming trend. The present results reveal that the weakening trend of the summer monsoon cross-equatorial flow has favored a reorientation of surface westerlies towards the equatorial IO during recent decades, relative to summer monsoons of earlier decades, which were dominated by stronger cross-equatorial flow. Our analysis suggests that the weakening of the summer monsoon cross-equatorial flow has in turn significantly accelerated the SST warming in the central equatorial IO. While the trend in the equatorial westerlies has promoted downwelling and thermocline deepening in the eastern equatorial IO, the central equatorial IO warming is attributed to reduced upwelling in response to a weakening trend of the wind-stress curl. The observed trends in Indian monsoon rainfall and the near-equatorial SST warming are shown to be closely related to variations in the meridional gradient of the monsoon zonal winds. An examination of the twentieth century simulations from 22 IPCC AR4 models, suggests that some models capture the recent equatorial IO warming associated with the weakened summer monsoon circulation reasonably well. The individual member models, however, exhibit significant inter-model variations in representing the observed response of the IO and monsoon coupled system.  相似文献   
5.
The present study focuses on understanding the dynamics of intensification of the boreal summer monsoon cross-equatorial flow generally observed during positive-Indian Ocean Dipole (IOD) events, by taking 1994 as a case study. In particular, the influence of the anomalous divergent motions during 1994 (i.e., east–west circulation over equatorial Indian Ocean and the monsoon Hadley-type circulation) on the intensification of summer monsoon cross-equatorial flow is investigated. This problem is examined using diagnostic analyses and simulation experiments from a multi-level global atmospheric model forced with observed diabatic heating. The results suggest that the transfer of kinetic energy (KE) from the divergent motions to the rotational flows can be very effective during IOD periods like 1994; and provides a plausible explanation for the increase of KE of the monsoon cross-equatorial flow over Bay-of-Bengal and adjoining areas. The study also investigates the enhanced activity of westward propagating disturbances observed during 1994 over the monsoon region.  相似文献   
6.
Sandeep  N.  Swapna  P.  Krishnan  R.  Farneti  R.  Prajeesh  A. G.  Ayantika  D. C.  Manmeet  S. 《Climate Dynamics》2020,54(7):3507-3524
Climate Dynamics - Observational records and climate model projections reveal a considerable decline in the Atlantic Meridional Overturning Circulation (AMOC). Changes in the AMOC can have a...  相似文献   
7.
8.
Remote sensing data sets and a high-resolution three-dimensional regional ocean model were utilized to investigate the shifting of warm/cold regime and the associated sea level variation in the South China Sea (SCS) during 2000–2003. Both the altimetry data and the model results showed an increase in the sea level (warm phase) followed by an abrupt decrease (cold phase) in the SCS during 2000–2003. Heat budget calculations performed with the model revealed excess heat advection from the western Pacific warm pool into the SCS during the warm phase than the cold phase. The warm phase, which occurred during La Niña episodes, resulted from the intrusion of abnormally warmer western Pacific water that increased the heat content and thus sea level in the SCS. The cold phase, which occurred during El Niño episodes, was triggered by a reduction in the net atmospheric heat flux followed by cold water advection into the SCS. Decrease in the rate of precipitation minus evaporation (P?E) also accounted for the falling of sea level during cold phase. The present study integrated the available remote sensing data and advanced numerical model to identify the time-dependent three-dimensional dynamic and thermodynamic forcing that are important in governing the warm/cold regime shift in the SCS.  相似文献   
9.
Riverine waters bring to seas a variety of suspended materials, which are ultimately deposited on the shelf or exported to the deep ocean. Investigation of the mineralogical contents of these continental-borne constituents on seafloors may reveal valuable information about the environmental conditions in the drainage basin. In this note we report results of X-ray diffraction and other analysis of sediments in bottom samples collected on the continental shelf under influence of the Plata River and the Patos Lagoon, in South America. The analysis reveals that non-clay materials are mostly concentrated south of 33°S, while clay sediments are relatively more abundant further north. We propose that such distributions are controlled by the circulation pattern and water mass distribution of the lower and upper layers, respectively.  相似文献   
10.
This paper examines an issue concerning the simulation of anomalously wet Indian summer monsoons like 1994 which co-occurred with strong positive Indian Ocean Dipole (IOD) conditions in the tropical Indian Ocean. Contrary to observations it has been noticed that standalone atmospheric general circulation models (AGCM) forced with observed SST boundary condition, consistently depicted a decrease of the summer monsoon rainfall during 1994 over the Indian region. Given the ocean?Catmosphere coupling during IOD events, we have examined whether the failure of standalone AGCM simulations in capturing wet Indian monsoons like 1994 can be remedied by including a simple form of coupling that allows the monsoon circulation to dynamically interact with the IOD anomalies. With this view, we have performed a suite of simulations by coupling an AGCM to a slab-ocean model with spatially varying mixed-layer-depth (MLD) specified from observations for the 1994 IOD; as well as four other cases (1983, 1997, 2006, 2007). The specification of spatially varying MLD from observations allows us to constrain the model to observed IOD conditions. It is seen that the inclusion of coupling significantly improves the large-scale circulation response by strengthening the monsoon cross-equatorial flow; leading to precipitation enhancement over the subcontinent and rainfall decrease over south-eastern tropical Indian Ocean??in a manner broadly consistent with observations. A plausible physical mechanism is suggested to explain the monsoonal response in the coupled frame-work. These results warrant the need for improved monsoon simulations with fully coupled models to be able to better capture the observed monsoon interannual variability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号