首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  国内免费   1篇
测绘学   2篇
地球物理   1篇
地质学   9篇
天文学   4篇
自然地理   1篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2006年   1篇
  2005年   1篇
  2001年   1篇
  1997年   1篇
排序方式: 共有17条查询结果,搜索用时 437 毫秒
1.
Four organic-rich shale units of the Proterozoic Vindhyan sedimentary succession have been scanned to reveal their origin and hydrocarbon potential. The wavy-crinkly nature of the carbonaceous laminae is suggestive of a microbial mat origin of the shales. These shales are thus different from Phanerozoic black shales which typically exhibit planar laminae. The hydrocarbon potential of the black shale units has been evaluated by Rock-Eval pyrolysis. Total organic carbon content of many of the shales exceeds 1%. The meanT max for the black shales translate to a vitrinite reflectance range of 2.05-2.40% Rm based on standard conversion techniques. These shales have reached the catagenetic stage near the beginning of anthracite formation.  相似文献   
2.
3.
Kachchh basin is a Mesozoic rift basin under the influence of many active faults. This in turn gives rise to marked structural complexity and associated seismicity. Remote Sensing study of geomorphic evidences of these faults has been carried out using satellite images and is validated using morphometric analysis and digital elevation model data. Satellite images not only help in identifying expression of active faults and active tectonics on a macroscopic scale, but also provide the image characteristics of active faults directly. A few faults along with nature of lateral displacement could be identified from the Kachchh area. Morphometric analysis viz., sinuosity, asymmetry factor and hypsometry indicated affected streams and drainage basins due to fault activity.  相似文献   
4.
We have examined polar magnetic fields for the last three solar cycles, viz. Cycles 21, 22, and 23 using NSO/Kitt Peak synoptic magnetograms. In addition, we have used SOHO/MDI magnetograms to derive the polar fields during Cycle 23. Both Kitt Peak and MDI data at high latitudes (78° – 90°) in both solar hemispheres show a significant drop in the absolute value of polar fields from the late declining phase of the Solar Cycle 22 to the maximum of the Solar Cycle 23. We find that long-term changes in the absolute value of the polar field, in Cycle 23, are well correlated with changes in meridional-flow speeds that have been reported recently. We discuss the implication of this in influencing the extremely prolonged minimum experienced at the start of the current Cycle 24 and in forecasting the behavior of future solar cycles.  相似文献   
5.
Petrographic studies of samples of the Rajmahal basalt reveal a variety of microscopic joints within phenocrysts, which seem to have developed under the influence of thermal stresses during cooling. The theoretical analysis shows that:
–  •thermal stresses develop in a system only under unsteady state of cooling,
–  •the stresses responsible for the development of joints are tensile in nature, and
–  •the magnitude of stresses increases with increasing rates of cooling.
In order to understand the effects of cooling rate on the mode of jointing, analogue model experiments were performed by quenching melt films of organic, crystalline materials under varying cooling conditions. In experiments, non-branching linear joints developed at relatively lower rates of cooling by a process of sub-critical crack propagation. On the other hand, at higher rates of cooling the mechanism of crack propagation was essentially supercritical leading to the development of branching joints.  相似文献   
6.
Possible precursor signatures in the quasi-periodic variations of solar photospheric fields were investigated in the build-up to one of the deepest solar minima experienced in the past 100 years. This unusual and deep solar minimum occurred between Solar Cycles 23 and 24. We used both wavelet and Fourier analysis to study the changes in the quasi-periodic variations of solar photospheric fields. Photospheric fields were derived using ground-based synoptic magnetograms spanning the period 1975.14 to 2009.86 and covering Solar Cycles 21, 22, and 23. A hemispheric asymmetry in the periodicities of the photospheric fields was seen only at latitudes above ±?45° when the data were divided into two parts based on a wavelet analysis: one prior to 1996 and the other after 1996. Furthermore, the hemispheric asymmetry was observed to be confined to the latitude range of 45° to 60°. This can be attributed to the variations in polar surges that primarily depend on both the emergence of surface magnetic flux and varying solar-surface flows. The observed asymmetry along with the fact that both solar fields above ±?45° and micro-turbulence levels in the inner-heliosphere have been decreasing since the early- to mid-nineties (Janardhan et al. in Geophys. Res. Lett. 382, 20108, 2011) suggest that around this time active changes occurred in the solar dynamo that governs the underlying basic processes in the Sun. These changes in turn probably initiated the build-up to the very deep solar minimum at the end of Cycle 23. The decline in fields above ±?45°, for well over a solar cycle, would imply that weak polar fields have been generated in the past two successive solar cycles, viz. Cycles 22 and 23. A continuation of this declining trend beyond 22 years, if it occurs, will have serious implications for our current understanding of the solar dynamo.  相似文献   
7.
The very low frequency(VLF) regime below 30 MHz in the electromagnetic spectrum has presently been drawing global attention in radio astronomical research due to its potentially significant science outcomes exploring many unknown extragalactic sources,transients,and so on.However,the nontransparency of the Earth's ionosphere,ionospheric distortion and artificial radio frequency interference(RFI) have made it difficult to detect the VLF celestial radio emission with ground-based instruments.A straightforward solution to overcome these problems is a space-based VLF radio telescope,just like the VLF radio instruments onboard the Chang'E-4 spacecraft.But building such a space telescope would be inevitably costly and technically challenging.The alternative approach would be then a ground-based VLF radio telescope.Particularly,in the period of post 2020 when the solar and terrestrial ionospheric activities are expected to be in a 'calm' state,it will provide us a good chance to perform VLF ground-based radio observations.Anticipating such an opportunity,we built an agile VLF radio spectrum explorer co-located with the currently operational Mingantu Spectra Radio Heliograph(MUSER).The instrument includes four antennas operating in the VLF frequency range 1-70 MHz.Along with them,we employ an eight-channel analog and digital receivers to amplify,digitize and process the radio signals received by the antennas.We present in the paper this VLF radio spectrum explorer and the instrument will be useful for celestial studies of VLF radio emissions.  相似文献   
8.
Floods are one of nature's most destructive disasters because of the immense damage to land, buildings, and human fatalities.It is difficult to forecast the areas that are vulnerable to flash flooding due to the dynamic and complex nature of the flash floods.Therefore, earlier identification of flash flood susceptible sites can be performed using advanced machine learning models for managing flood disasters.In this study, we applied and assessed two new hybrid ensemble models, namely Dagging and Random Subspace(RS) coupled with Artificial Neural Network(ANN), Random Forest(RF), and Support Vector Machine(SVM) which are the other three state-of-the-art machine learning models for modelling flood susceptibility maps at the Teesta River basin, the northern region of Bangladesh.The application of these models includes twelve flood influencing factors with 413 current and former flooding points, which were transferred in a GIS environment.The information gain ratio, the multicollinearity diagnostics tests were employed to determine the association between the occurrences and flood influential factors.For the validation and the comparison of these models, for the ability to predict the statistical appraisal measures such as Freidman, Wilcoxon signed-rank, and t-paired tests and Receiver Operating Characteristic Curve(ROC) were employed.The value of the Area Under the Curve(AUC) of ROC was above 0.80 for all models.For flood susceptibility modelling, the Dagging model performs superior, followed by RF,the ANN, the SVM, and the RS, then the several benchmark models.The approach and solution-oriented outcomes outlined in this paper will assist state and local authorities as well as policy makers in reducing flood-related threats and will also assist in the implementation of effective mitigation strategies to mitigate future damage.  相似文献   
9.
10.
The Singhbhum Shear Zone in eastern India is one of the largest repositories of uranium and copper in India. Besides uranium and copper, apatite-magnetite mineralization is widespread in this shear zone. This study aims at deciphering the physico-chemical evolution of magnetite mineralization in relation to progressive shearing integrating field relations, micro-textures, structures and compositions of magnetite in the Banduhurang uranium mine. Apatite-magnetite ores occur as discrete patches, tongues, and veins in the strongly deformed, fine grained quartzchlorite schist. Textures and microstructures of magnetite indicate at least three stages of magnetite formation. Coarsegrained magnetite (magnetite-1) with long, rotational, and complex strain fringes, defined by fibrous and elongate quartz, is assigned to a stage of pre-/early-shearing magnetite formation. Medium grained magnetite (magnetite-2), characterized by single non-rotational strain fringe equivalent to the youngest fringe of magnetite-1, grew likely at the mid-/late-stage of shearing. Fine grained magnetite (magnetite-3) is generally devoid of any pressure shadow. This indicates even a much later stage of formation of this magnetite, presumably towards the closing stage of shearing. Some of the magnetite-1 grains are optically heterogeneous with a dark, pitted Cr-Ti-bearing core overgrown by lighter, fresh rim locally containing pyrite, chalcopyrite, and chlorite inclusions. The cores are also locally characterized by high Al and Si content. Homogeneous magnetite-1 is optically and compositionally similar to the overgrowth of heterogeneous magnetite-1. This homogeneous magnetite-1 that grew as separate phase is contemporaneous with the overgrowth on pitted core of heterogeneous magnetite-1. Magnetite-2 is compositionally very similar to homogeneous magnetite-1, but is devoid of sulfide inclusion. Magnetite-3 is generally devoid of any silicate or sulfide inclusion and is most pure with least concentrations of trace/minor elements. The high Al and Si content in some magnetite can be explained by coupled substitution that involves substitution of Si4+ for Fe3+ in the tetrahedral sites and Fe2+ for Fe3+ in the octahedral sites, with a simple substitution of Al3+ for Fe3+ in the octahedral sites. The mode of occurrences of apatite-magnetite ores indicates a predominantly hydrothermal origin of most magnetite. However, the Cr-Ti-bearing magnetite-1 cores and inferred mafic nature of the original protolith indicates that some magnetite was inherited from the original igneous rock. We propose that the pre-/early-shearing hydrothermal event of magnetite formation was associated with sulfide mineralization and alteration of existing magmatic magnetite. The second stage of magnetite formation at the mid-/late-stage of shearing was not associated with sulfide formation. Finally, fine-grained compositionally pure magnetite formed at the closing stage of shearing likely due to metamorphism of Fe-rich protolith.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号