首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   10篇
  国内免费   3篇
测绘学   5篇
大气科学   42篇
地球物理   91篇
地质学   111篇
海洋学   31篇
天文学   23篇
综合类   3篇
自然地理   25篇
  2022年   2篇
  2021年   5篇
  2020年   10篇
  2019年   8篇
  2018年   7篇
  2017年   9篇
  2016年   16篇
  2015年   13篇
  2014年   8篇
  2013年   18篇
  2012年   12篇
  2011年   16篇
  2010年   10篇
  2009年   10篇
  2008年   16篇
  2007年   5篇
  2006年   7篇
  2005年   9篇
  2004年   6篇
  2003年   9篇
  2002年   4篇
  2001年   8篇
  2000年   10篇
  1999年   8篇
  1998年   6篇
  1997年   7篇
  1996年   2篇
  1995年   5篇
  1994年   7篇
  1993年   3篇
  1992年   4篇
  1991年   5篇
  1985年   2篇
  1984年   7篇
  1983年   4篇
  1982年   2篇
  1980年   2篇
  1977年   4篇
  1975年   3篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1967年   2篇
  1954年   4篇
  1953年   3篇
  1951年   3篇
  1950年   4篇
  1924年   2篇
  1922年   1篇
  1913年   1篇
排序方式: 共有331条查询结果,搜索用时 15 毫秒
1.
This paper presents the history and cryostratigraphy of the upper permafrost in the High‐Arctic Adventdalen Valley, central Svalbard. Nineteen frozen sediment cores, up to 10.7 m long, obtained at five periglacial landforms, were analysed for cryostructures, ice, carbon and solute contents, and grain‐size distribution, and were 14C‐ and OSL‐dated. Spatial variability in ice and carbon contents is closely related to the sedimentary history and mode of permafrost aggradation. In the valley bottom, saline epigenetic permafrost with pore ice down to depths of 10.7 m depth formed in deltaic sediments since the mid‐Holocene; cryopegs were encountered below 6 m. In the top 1 to 5 m, syngenetic and quasi‐syngenetic permafrost with microlenticular, lenticular, suspended and organic‐matrix cryostructures developed due to loess and alluvial sedimentation since the colder late Holocene, which resulted in the burial of organic material. At the transition between deltaic sediments and loess, massive ice bodies occurred. A pingo developed where the deltaic sediments reached the surface. On hillslopes, suspended cryostructure on solifluction sheets indicates quasi‐syngenetic permafrost aggradation; lobes, in contrast, were ice‐poor. Suspended cryostructure in eluvial deposits reflects epigenetic or quasi‐syngenetic permafrost formation on a weathered bedrock plateau. Landform‐scale spatial variations in ground ice and carbon relate to variations in slope, sedimentation rate, moisture conditions and stratigraphy. Although the study reveals close links between Holocene landscape evolution and permafrost history, our results emphasize a large uncertainty in using terrain surface indicators to infer ground‐ice contents and upscale from core to landform scale in mountainous permafrost landscapes.  相似文献   
2.
Catalytic cathodic stripping voltammetry (CSV) preceded by adsorptive collection of complexes of 1-nitroso-2-napthol (NN) can be used to determine iron in seawater. It is shown here that iron(II) is effectively masked in the presence of 2,2-dipyridyl (Dp) so that iron(III) is measured selectively. The concentration of iron(II) is then calculated as the difference between the concentrations of reactive iron (FeR) in the absence and presence of 2 μM Dp, FeR being defined as that which was complexed by 20 μM NN at pH 6.9 in the presence of 1.8 mM H2O2 and 5 ppm sodium dodecyl sulphate. A 30 min reaction time was allowed for Dp to react with iron(II) in seawater prior to the determination of reactive iron(III) using the same conditions as used for FeR. Detection limits of 0.08 nM, 0.077 nM and 0.12 nM were obtained for FeR, iron(III) and iron(II), respectively, using a 60 s deposition time.The method was utilised to determine the redox speciation of iron in the northern North Sea. Concentrations of FeR ranged between 0.8 and 3.5 nM with nutrient-like depth profiles. Iron(II) was found to be present at concentrations up to 1.2 nM, the highest concentrations occurring in the upper 20 m of the water column.  相似文献   
3.
Herein we document and interpret an absolute chronological dating attempt using geomagnetic paleointensity data from a post-glacial sediment drape on the western Antarctic Peninsula continental shelf. Our results demonstrate that absolute dating can be established in Holocene Antarctic shelf sediments that lack suitable material for radiocarbon dating. Two jumbo piston cores of 10-m length were collected in the Western Bransfield Basin. The cores preserve a strong, stable remanent magnetization and meet the magnetic mineral assemblage criteria recommended for reliable paleointensity analyses. The relative paleomagnetic intensity records were tuned to published absolute and relative paleomagnetic stacks, which yielded a record of the last ∼8500 years for the post-glacial drape. Four tephra layers associated with documented eruptions of nearby Deception Island have been dated at 3.31, 3.73, 4.44, and 6.86 ± 0.07 ka using the geomagnetic paleointensity method. This study establishes the dual role of geomagnetic paleointensity and tephrochronology in marine sediments across both sides of the northern Antarctic Peninsula.  相似文献   
4.
Sediments from Lake Pepin on the Mississippi River, southeastern Minnesota, are used as provenance tracers to assess variations in hydrology and sediment-transport during the middle Holocene. Three rivers contribute sediment to Lake Pepin, and each catchment is characterized by a distinctly different geologic terrain. The geochemical fingerprint for each drainage basin was determined from the elemental composition of heavy minerals in the silt-sized fraction of modern sediment samples. Down-core elemental abundances were compared with these fingerprints by use of a chemical-mass-balance model that apportions sediment to the source areas. We observed a decreased contribution from the Minnesota River during the interval ~6700–5500 14C yr BP, which we attribute to decreased discharge of the Minnesota River, likely controlled by a combination of precipitation, snow melt, and groundwater input to the river. This hydrologic condition coincides with the mid-Holocene prairie period recorded by fossil pollen data. The occurrence of this feature in a proxy record for hydrologic variations supports the hypothesis that the mid-Holocene prairie period reflects drier conditions than before or after in midwestern North America.  相似文献   
5.
In-situ Hf isotope analyses and U–Pb dates were obtained by laser ablation-MC-ICP-MS for a zircon-bearing mantle eclogite xenolith from the diamondiferous Jericho kimberlite located within the Archean Slave Province (Nunavut), Canada. The U–Pb zircon results yield a wide range of ages (2.0 to 0.8 Ga) indicating a complex geological history. Of importance, one zircon yields a U–Pb upper intercept date of 1989 ± 67 Ma, providing a new minimum age constraint for zircon crystallization and eclogite formation. In contrast, Hf isotope systematics for the same zircons display an intriguing uniformity, and corresponding Hf depleted mantle model ages range between 2.1 ± 0.1 and 2.3 ± 0.1 Ga; the youngest Hf model age is within error to the oldest U–Pb date.

The Jericho eclogites have previously been interpreted as representing remnants of metamorphosed oceanic crust, and their formation related to Paleoproterozoic subduction regimes along the western margin of the Archean Slave craton during the Wopmay orogeny. Hf isotope compositions and U–Pb results for the Jericho zircons reported here are in good agreement with a Paleoproterozoic subduction model, suggesting that generation of oceanic crust and eclogite formation occurred between 2.0 and 2.1 Ga. The slightly older Hf depleted mantle model ages (2.1 to 2.3 Ga) may be reconciled with this model by invoking mixing between ‘crustal’-derived Hf from sediments and more radiogenic Hf associated with the oceanic crust during the 2 Ga subduction event. This results in intermediate Hf isotope compositions for the Jericho zircons that yield ‘fictitiously’ older Hf model ages.  相似文献   

6.
The Southern Marginal Zone of the Limpopo Belt in South Africa is characterised by a granulite and retrograde hydrated granulite terrane. The Southern Marginal Zone is, therefore, perfectly suitable to study fluids during and after granulite facies metamorphism by means of fluid inclusions and equilibrium calculations. Isolated and clustered high-salinity aqueous and CO2(-CH4) fluid inclusions within quartz inclusions in garnet in metapelites demonstrate that these immiscible low H2O activity fluids were present under peak metamorphic conditions (800-850 °C, 7.5-8.5 kbar). The absence of widespread high-temperature metasomatic alteration indicates that the brine fluid was probably only locally present in small quantities. Thermocalc calculations demonstrate that the peak metamorphic mineral assemblage in mafic granulites was in equilibrium with a fluid with a low H2O activity (0.2-0.3). The absence of water in CO2-rich fluid inclusions is due to either observation difficulties or selective water leakage. The density of CO2 inclusions in trails suggests a retrograde P-T path dominated by decompression at T<600 °C. Re-evaluation of previously published data demonstrates that retrograde hydration of the granulites at 600 °C occurred in the presence of H2O and CO2-rich fluids under P-T conditions of 5-6 kbar and ~600 °C. The different compositions of the hydrating fluid suggest more than one fluid source.  相似文献   
7.
8.
Soil freeze–thaw events have important implications for water resources, flood risk, land productivity, and climate change. A property of these phenomena is the relationship between unfrozen water content and sub-freezing temperature, known as the soil freezing characteristic curve (SFC). It is documented that this relationship exhibits hysteretic behaviour when frozen soil thaws, leading to the definition of the soil thawing characteristic curve (STC). Although explanations have been given for SFC/STC hysteresis, the effect that ‘scale’ – particularly ‘measurement scale’ – may have on these curves has received little attention. The most commonly used measurement scale metric is the ‘support’, which is the spatial (or temporal) unit within which the measured variable is integrated or soil volume sampled. We show (a) measurement support can influence the range and shape of the SFC and (b) hysteresis can be attributed, in part, to the support and location of the measurements comprising the SFC/STC. We simulated lab measured temperature, volumetric water content (VWC), and permittivity from soil samples undergoing freeze–thaw transitions using Hydrus-1D and a modified Dobson permittivity model. To assess the effect of measurement support and location on SFC/STC, we masked the simulated temperature and VWC/permittivity extent to match the instrument's support and location. By creating a detailed simulation of the intra- and inter-support variability associated with the penetration of a freezing front, we demonstrate how measurement support and location can influence the temperature range over which water freezing events are captured. We show it is possible to simulate hysteresis in homogenous media with purely geometric considerations, suggesting that SFC/STC hysteresis may be more of an apparent phenomenon than mechanistically real. Lastly, we develop an understanding of how the location and support of soil temperature and VWC/permittivity measurements influence the temperature range over which water freezing events are captured.  相似文献   
9.
Alluvial fans develop their semi‐conical shape by quasi‐cyclic avulsions of their geomorphologically active sector from a fixed fan apex. On debris‐flow fans, these quasi‐cyclic avulsions are poorly understood, partly because physical scale experiments on the formation of fans have been limited largely to turbidite and fluvial fans and deltas. In this study, debris‐flow fans were experimentally created under constant extrinsic forcing, and autogenic sequences of backfilling, avulsion and channelization were observed. Backfilling, avulsion and channelization were gradual processes that required multiple successive debris‐flow events. Debris flows avulsed along preferential flow paths given by the balance between steepest descent and flow inertia. In the channelization phase, debris flows became progressively longer and narrower because momentum increasingly focused on the flow front as flow narrowed, resulting in longer run‐out and deeper channels. Backfilling commenced when debris flows reached their maximum possible length and channel depth, as defined by channel slope and debris‐flow volume and composition, after which they progressively shortened and widened until the entire channel was filled and avulsion was initiated. The terminus of deposition moved upstream because the frontal lobe deposits of previous debris flows created a low‐gradient zone forcing deposition. Consequently, the next debris flow was shorter which led to more in‐channel sedimentation, causing more overbank flow in the next debris flow and resulting in reduced momentum to the flow front and shorter runout. This topographic feedback is similar to the interaction between flow and mouth bars forcing backfilling and transitions from channelized to sheet flow in turbidite and fluvial fans and deltas. Debris‐flow avulsion cycles are governed by the same large‐scale topographic compensation that drives avulsion cycles on fluvial and turbidite fans, although the detailed processes are unique to debris‐flow fans. This novel result provides a basis for modelling of debris‐flow fans with applications in hazards and stratigraphy.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号