首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
测绘学   2篇
地球物理   1篇
地质学   1篇
  2021年   1篇
  2013年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The Gradenbach mass movement (GMM) is an example of DGSD (deep-seated gravitational slope deformation) in crystalline rocks of the Eastern Alps (12.85°E, 47.00°N). The main body of the GMM covers an area of 1.7 km2 and its volume is about 120?×?106 m3. A reconstruction of the deformation history yields a mean displacement of?~?22 m from 1962 to 2011. In 1965/66, 1975, 2001, and 2009 high sliding velocities, exceeding several meters per year, interrupt the quasi-stationary periods of slow movement (≤0.3 m/year). Since 1999 the displacement of the main body of the GMM has been observed by GPS. Time series of extensometer readings, precipitation, snow cover water equivalent, water discharge, and hydrostatic water level observed in boreholes were re-processed and are presented in this paper. Continuous recording of seismic activity by a seismic monitoring network at the GMM began in the summer of 2006. Deformation has been monitored since 2007 by an embedded strain rosette based on fiber optics technology and a local conventional geodetic deformation network. The velocity of the GMM could be modeled to a large extent by a quantitative relation to hydro-meteorological data. During the phase of high sliding velocity in spring 2009, the seismic activity in the area increased significantly. Several types of seismic events were identified with some of them preceding the acceleration of the main body by about 6 weeks. The potential inherent in the Gradenbach Observatory data to supply early warning and hazard estimation is discussed.  相似文献   
2.
A new isostatic model for the Earths gravity field is presented based on a simple hypothesis of layers approximating constant density contrasts. The spherical layer distribution used to describe the hydrostatic equilibrium of the Earths masses leads to a new set of spherical harmonic coefficients for the gravitational potential. First attempts to quantify the information content of these coefficients led to the outcome that they seem to explain the observed gravity field for a certain wavelength band, while they are insufficient for short and very long wavelengths. A synthesis of the derived coefficients over specific degree ranges provided a computation of band-limited geoid undulations on a global scale. The association of these potential quantities with known tectonic structures, such as the topography of the core–mantle boundary, strengthens the belief that the interpretation of Earth gravity models, especially those arising from global digital elevation models, should be considered in close relation with deep-Earth structure.  相似文献   
3.
4.
Tomas  Kozel  Milos  Stary 《Water Resources》2021,48(4):532-543
Water Resources - A single study investigates the possibility of using adaptive control of the reservoir Vranov Reservoir situated on the Dyje River. The control algorithm uses a fuzzy model that...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号