首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   3篇
地质学   2篇
  2006年   3篇
  1996年   1篇
  1984年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
2.
The earthquakes of Calabria are among the strongest in the whole Mediterranean, and they all occurred between the disruptive sequences of 1638 and 1908 (6.7 ≤ M ≤ 7.2). Recent paleoseismological studies show that the return time of these events on their causative fault are larger than 1 ky, thus making ancient earthquakes not recognizable through ‘conventional’ historical research. On the other hand, in those areas characterized by highly erodible deposits, the identification and paleoseismic trenching of active seismogenetic faults has remained a challenge. In order to overcome these issues, we took an archaeoseismological approach for casting light on earthquake occurrence in one of these regions, i.e., the SE area of central Ionian Calabria (Marchesato region). The extensive traces of simultaneous and abrupt collapses in the Roman settlement of Capo Colonna (in the area of the sixth and fifth b.c. sanctuary of Hera Lacinia, near the town of Crotone) are evidence of a disruptive earthquake, which occurred possibly in the third century a.d. To the same event we ascribe the definitive collapse of the Hera Lacinia temple. Considering the seismotectonic framework of the region, this event could be tentatively associated with the active fault system which cuts from NW to SE the whole Sila massif and its Ionian slope, and which should be responsible for all the others known M > 6 earthquakes in the area.  相似文献   
3.
 New Sr- Nd- and Pb-isotopic and trace element data are presented on basalts from the Sulu and Celebes Basins, and the submerged Cagayan Ridge Arc (Western Pacific), recently sampled during Ocean Drilling Program Leg 124. Drilling has shown that the Sulu Basin developed about 18 Ma ago as a backarc basin, associated with the now submerged Cagayan Ridge Arc, whereas the Celebes Basin was generated about 43 Ma ago, contemporaneous with a general plate reorganisation in the Western Pacific, subsequently developing as an open ocean receiving pelagic sediments until the middle Miocene. In both basins, a late middle Miocene collision phase and the onset of volcanic activity on adjacent arcs in the late Miocene are recorded. Covariations between 87Sr/86Sr and 143Nd/144Nd show that the seafloor basalts from both the Sulu and Celebes Basins are isotopically similar to depleted Indian mid-ocean ridge basalts (MORB), and distinct from East Pacific Rise MORB, defining a single negative correlation. The Cagayan Arc volcanics are different, in that they have distinctly lower ɛNd(T) for a given ɛSr(T), compared to Sulu and Celebes basalts. In the 207Pb/204Pb and 208Pb/204Pb versus 206Pb/204Pb diagrams, the Celebes, Sulu and Cagayan rocks all plot distinctly above the Northern Hemisphere Reference Line, with high Δ7/4 Pb (5.3–9.3) and D8/4 Pb (46.3–68.1) values. They define a single trend of radiogenic lead enrichment from Celebes through Sulu to Cagayan Ridge, within the Indian Ocean MORB data field. The data suggest that the overall chemical and isotopic features of the Sulu, Cagayan and Celebes rocks may be explained by partial melting of a depleted asthenospheric N-MORB-type (“normal”) mantle source with isotopic characteristics similar to those of the Indian Ocean MORB source. This asthenospheric source was slightly heterogeneous, giving rise to the Sr-Nd isotopic differences between the Celebes and Sulu basalts, and the Cagayan Ridge volcanics. In addition, a probably slab-derived component enriched in LILE and LREE is required to generate the elemental characteristics and low Nd(T) of the Cagayan Ridge island arc tholeiitic and calcalkaline lavas, and to contribute to a small extent in the backarc basalts of the Sulu Sea. The results of this study confirm and extend the widespread Indian Ocean MORB signature in the Western Pacific region. This signature could have been inherited by the Indian Ocean mantle itself during the rupture of Gondwanaland, when fragments of this mantle could have migrated towards the present position of the Celebes, Sulu and Cagayan sources. Received: 23 May 1995/Accepted: 12 October 1995  相似文献   
4.
Piera  Spadea  Massimo  D'Antonio 《Island Arc》2006,15(1):7-25
Abstract The Southern Uralides are a collisional orogen generated in the Late Devonian–Early Carboniferous by the collision of the Magnitogorsk island arc (MA) generated in the Early to Middle Devonian by intra‐oceanic convergence opposite to the continental margin, and the continental margin of the East European craton. A suture zone of the arc to the continental margin, the Main Uralian Fault (MUF), is marked by ophiolites and exhumed high‐pressure–low‐temperature metamorphic rocks of continental origin. The pre‐orogenic events of the Southern Urals and their geodynamic setting are traced by means of fluid‐immobile incompatible trace elements (rare earth elements and high field strength elements) and Sr–Nd–Pb isotope geochemistry of the MA suites, in particular the protoarc suite with boninites and probably ankaramites, and the mature arc comprised of island arc tholeiitic (IAT) suites, transitional IAT to calc‐alkaline (CA), and CA suites. The MA volcanics result in genetically distinct magmatic source components. In particular, depleted normal‐mid‐oceanic ridge basalt‐type mantle sources with various enrichments in a slab‐derived aqueous fluid component are evident. The enriched component is not involved in significant amounts, as testified by the rather radiogenic Nd isotopes and unradiogenic Pb isotopes. Further information on the pre‐orogenic events is provided by the Mindyak Massif metagabbros derived from diverse gabbroic protoliths that were affected by oceanic rodingitization, and subsequently by a high‐temperature (HT) metamorphism related to the development of a metamorphic sole. The HT metamorphism has the same age as the protoarc volcanism, and constrains the initiation of subduction at approximately 410 Ma. Consequently, the maximum timespan between initial intra‐oceanic convergence and final collision is approximately 31 my, a duration consistent with that of present‐day ongoing collisions in the western Pacific. The characteristics of early volcanism and the traces of a metamorphic sole provide useful criteria to attribute most MUF ophiolites to the Tethyan type with a complex pre‐orogenic evolution.  相似文献   
5.
In the Ligurian Apennines and the Brianzonese area of the Maritime Alps (Northern Italy), and in the Lucanian Apennines and Calabria (Southern Italy), pumpellyite formed during the Alpine metamorphism is widespread in terranes of Late Paleozoic to Miocene age, particularly in mafic ophiolites (Tethyan ophiolites of Jurassic-Early Cretaceous age).Pumpellyite developed under variable metamorphic conditions, which include zeolite, prehnite-pumpellyite, pumpellyite-actinolite, lawsonite-albite and blueschist facies. Pumpellyite from rocks belonging to all these facies was studied in 30 specimens of different chemistry, derived mostly from ophiolitic basalt and gabbro, but also from gneiss, amphibolite, and greywacke protoliths.Microprobe data give evidence of strong compositional variations of pumpellyite. The ranges are extreme for Al and Fetot (Al2O3=18.74–30.91; FeOtot=0.46–12.71), to a lesser extent for Mg (MgO=0.58–4.00), with a reciprocal variation of Al and Fetot which suggests that most Fe is Fe3+.Pumpellyite compositions can be related with the metamorphic conditions, particularly an increase of the Al/Fetot ratio with increasing pressure, but larger compositional variation for each facies in the Al-Fetot-Mg diagram than those previously described was recognized. Particularly the compositions of pumpellyite from the pumpellyite-actinolite and blueschist fades assemblages extend towards higher Fetot contents. Moreover, pumpellyites of the lawsonite-albite facies rocks result to be more aluminous than in blueschist facies; such relations appear to be inconsistent with that expected by the effects of pressure on the Al content.As the rocks are generally incompletely re-equilibrated, their bulk chemistry is not an important factor of pumpellyite composition; in fact the correlations of Al, Fetot and Mg are low. The local environment of crystallization, more evidently the composition of the precursor minerals, seems to be a major controlling factor. The observed topologic relations indicate that either the nature of the precursor mineral, or the presence of relict phases have a great influence on the pumpellyite composition. The observed variations within individual specimens, as well as the interspecimen ones, can be explained by small-scale inhomogeneities and in some cases by differences in the activity of O2.It can be therefore concluded that the composition of pumpellyite often reflects disequilibrium crystallization and cannot be generally used as an indicator of metamorphic conditions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号