首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   1篇
地质学   1篇
天文学   3篇
  2014年   2篇
  2005年   2篇
  2003年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
2.
The high abundances of the high field‐strength elements in ilmenite and rutile make these minerals particularly suitable for hafnium isotopic investigations. We present a technique for separating Hf by ion exchange chemistry from high‐TiO2 (> 40% m/m) minerals to achieve precise Hf isotopic composition analyses by MC (multiple collector)‐ICP‐MS. Following digestion and conversion to chlorides, the first elution column is used to separate iron and the rare earth elements, the second column is designed to separate most of the titanium from Hf, an evaporation step using HClO4 is then performed to remove any trace of HF in preparation for the third column, which is needed to eliminate any remaining trace of titanium. The modified chemistry helped to improve the yields from < 10 to > 78% as well as the analytical precision of the processed samples (e.g., sample 2033‐A1, 176Hf/177Hf = 0.282251 ± 25 before vs. 0.282225 ± 6 after). The technique was tested on a case study in which the Hf isotopic ratios of ilmenite and rutile (analysed prior to the chemistry improvement) were determined and permitted to evaluate that the origin of rutile‐bearing ilmenite deposits is from the same or similar magma than their, respectively, associated Proterozoic anorthosite massifs (Saint‐Urbain and Lac Allard) of the Grenville Province in Québec, Canada.  相似文献   
3.
The predicted emission spectrum of N  ii is compared with observations of permitted lines in the Orion nebula. Conventional nebular models show that the intensities of the more intense lines can be explained by fluorescence of starlight absorption with a N abundance that is consistent with forbidden lines. Lines excited mostly by recombination, on the other hand, predict high N abundances. The effects of stellar and nebular parameters and of the atomic data on the predicted intensities are examined.  相似文献   
4.
While it is well known that the ocean is one of the most important component of the climate system, with a heat capacity 1,100 times greater than the atmosphere, the ocean is also the primary reservoir for freshwater transport to the atmosphere and largest component of the global water cycle. Two new satellite sensors, the ESA Soil Moisture and Ocean Salinity (SMOS) and the NASA Aquarius SAC-D missions, are now providing the first space-borne measurements of the sea surface salinity (SSS). In this paper, we present examples demonstrating how SMOS-derived SSS data are being used to better characterize key land–ocean and atmosphere–ocean interaction processes that occur within the marine hydrological cycle. In particular, SMOS with its ocean mapping capability provides observations across the world’s largest tropical ocean fresh pool regions, and we discuss from intraseasonal to interannual precipitation impacts as well as large-scale river runoff from the Amazon–Orinoco and Congo rivers and its offshore advection. Synergistic multi-satellite analyses of these new surface salinity data sets combined with sea surface temperature, dynamical height and currents from altimetry, surface wind, ocean color, rainfall estimates, and in situ observations are shown to yield new freshwater budget insight. Finally, SSS observations from the SMOS and Aquarius/SAC-D sensors are combined to examine the response of the upper ocean to tropical cyclone passage including the potential role that a freshwater-induced upper ocean barrier layer may play in modulating surface cooling and enthalpy flux in tropical cyclone track regions.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号