首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   1篇
地质学   1篇
  2024年   1篇
  2016年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Long-term atmospheric water vapour hydrogen (δ2H), oxygen (δ18O) and deuterium excess (d-excess) can provide unique insights into the land-atmosphere coupling processes. The in-situ measurements of atmospheric water vapour δ2H, δ18O and d-excess were conducted above a reed wetland of Liaodong Bay (2019–2020). We found significant inter-annual variations in atmospheric water vapour isotopes between the two growing (May–September) seasons. The δ2H, δ18O and d-excess of atmospheric water vapour exhibited different seasonal and diurnal cycles concerning the vertical measurement heights, especially in 2019. The isotopic differences of atmospheric water vapour among vertical measurement heights were more evident in the daytime. Rainfall events directly impacted the diurnal patterns of water vapour isotopes, and the influences depended on rainfall intensities. However, only weak correlations existed between water vapour isotopes and local meteorological factors (R2 = 0.01–0.16, p < 0.001), such as water vapour concentration (w), Relative Humidity (RH) and surface air temperature (Ta). Based on the back-air trajectory analyses, the spatial–temporal dynamics of atmospheric water vapour isotopes are highly synchronized with monsoon activities. Different water vapour sources influence the water vapour isotope in this region and the higher d-excess value is related to the intense convection brought by the monsoon. High-resolution measurements of atmospheric water vapour isotopes will improve our understanding of the hydrological cycles in coastal areas.  相似文献   
2.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号