首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24358篇
  免费   5429篇
  国内免费   6064篇
测绘学   2322篇
大气科学   4163篇
地球物理   6780篇
地质学   13065篇
海洋学   3094篇
天文学   1249篇
综合类   2224篇
自然地理   2954篇
  2024年   116篇
  2023年   395篇
  2022年   1124篇
  2021年   1312篇
  2020年   1092篇
  2019年   1417篇
  2018年   1565篇
  2017年   1432篇
  2016年   1665篇
  2015年   1699篇
  2014年   1808篇
  2013年   1986篇
  2012年   1862篇
  2011年   1874篇
  2010年   1793篇
  2009年   1608篇
  2008年   1482篇
  2007年   1295篇
  2006年   1112篇
  2005年   995篇
  2004年   727篇
  2003年   714篇
  2002年   664篇
  2001年   661篇
  2000年   680篇
  1999年   744篇
  1998年   528篇
  1997年   522篇
  1996年   494篇
  1995年   405篇
  1994年   392篇
  1993年   308篇
  1992年   250篇
  1991年   197篇
  1990年   165篇
  1989年   156篇
  1988年   145篇
  1987年   85篇
  1986年   72篇
  1985年   66篇
  1984年   43篇
  1983年   29篇
  1982年   28篇
  1981年   32篇
  1980年   22篇
  1979年   23篇
  1978年   10篇
  1976年   8篇
  1958年   16篇
  1957年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Macrophyte community diversity and composition respond to ecosystem conservation and local environmental factors. In this study, we developed a multidimensional diversity framework for macrophyte communities, including the taxonomic and functional alpha and beta diversity. We used the framework to explore the relationships among water level regimes and these diversity parameters in a case study of China's Baiyangdian Lake. Analysis of indicators of hydrologic alteration divided the water level from 1959 to 2019 into four regimes (dry, <6.42 m; low, 6.42–7.23 m; medium, 7.23–8.19 m; high, >8.19 m). Alpha and beta diversity were significantly higher in the medium regime than in the low and high regimes. Redundancy analysis indicated that the maximum water depth significantly affected taxonomic alpha diversity, and total nitrogen (TN) and chemical oxygen demand (COD) concentration significantly affected functional alpha diversity, respectively. Mantel tests showed that TN, Secchi depth (SD), and water depth in the high water level regime significantly increased the total beta diversity and turnover components. TN was the main factor that increased total taxonomic beta diversity. Water level regime mainly influenced interspecific relationships by changing the TN and COD concentration. The water level should be maintained between the medium and high water level regimes to promote restoration of the macrophyte community and improve ecosystem stability. The biodiversity evaluation framework would provide a deeper insight into the hydrological process management for restoration of aquatic macrophyte communities in shallow lakes.  相似文献   
2.
The geodynamic mechanism of the late Early Cretaceous magmatic flare‐up in the collisional zone between the Lhasa and Qiangtang terranes in Tibet is controversial because of a scarcity of robust evidence. To address this problem, we report geochronological, geochemical and Hf isotopic data for the newly discovered Gufeng gabbros from the Duolong Cu–Au mineral district of the western Bangong–Nujiang Suture Zone (BNSZ). The gabbro samples, dated at 126.3 ± 1.8 Ma, show geochemical similarities to typical ocean island basalt (OIB) and have positive εHf(t) values of +3.3 to +6.9. The gabbros were generated by decompression melting of deep upwelling asthenosphere. This event is best explained by slab break‐off and the resultant development of a slab window beneath central Tibet.  相似文献   
3.
Reservoirs of lowland floodplain rivers with eutrophic backgrounds cause variations in the hydrological and hydraulic conditions of estuaries and low-dam reservoir areas, which can promote planktonic algae to proliferate and algal bloom outbreaks. Understanding the ecological effects of variations in hydrological and hydraulic processes in lowland rivers is important for algal bloom control. In this study, the middle and lower reaches of the Han River, China, a typical regulated lowland river with a eutrophic background, are selected. Based on the effect of hydrological and hydraulic variability on algal blooms, a hydrological management strategy for river algal bloom control is proposed. The results showed that (a) differences in river morphology and background nutrient levels cause significant differences in the critical threshold flow velocities for algal bloom outbreaks between natural river and low-dam reservoir sections; there is no uniform threshold flow velocity for algal bloom control. (b) There are significant differences in the river hydrological/hydraulic conditions between years with and without algal blooms. The average river flow, water level and velocity in years with algal blooms are significantly lower than those in years without algal blooms. (c) For different river sections where algal blooms occur and to meet the threshold flow velocities, the joint operation of cascade reservoirs and diversion projects is an effective method to prevent and control algal blooms in regulated lowland rivers. This study is expected to deepen our understanding of the ecological significance of special hydrological processes and guide algal bloom management in regulated lowland rivers.  相似文献   
4.
This paper studies dynamic crack propagation by employing the distinct lattice spring model (DLSM) and 3‐dimensional (3D) printing technique. A damage‐plasticity model was developed and implemented in a 2D DLSM. Applicability of the damage‐plasticity DLSM was verified against analytical elastic solutions and experimental results for crack propagation. As a physical analogy, dynamic fracturing tests were conducted on 3D printed specimens using the split Hopkinson pressure bar. The dynamic stress intensity factors were recorded, and crack paths were captured by a high‐speed camera. A parametric study was conducted to find the influences of the parameters on cracking behaviors, including initial and peak fracture toughness, crack speed, and crack patterns. Finally, selection of parameters for the damage‐plasticity model was determined through the comparison of numerical predictions and the experimentally observed cracking features.  相似文献   
5.
We investigate our ability to assess transfer of hexavalent chromium, Cr(VI), from the soil to surface runoff by considering the effect of coupling diverse adsorption models with a two‐layer solute transfer model. Our analyses are grounded on a set of two experiments associated with soils characterized by diverse particle size distributions. Our study is motivated by the observation that Cr(VI) is receiving much attention for the assessment of environmental risks due to its high solubility, mobility, and toxicological significance. Adsorption of Cr(VI) is considered to be at equilibrium in the mixing layer under our experimental conditions. Four adsorption models, that is, the Langmuir, Freundlich, Temkin, and linear models, constitute our set of alternative (competing) mathematical formulations. Experimental results reveal that the soil samples characterized by the finest grain sizes are associated with the highest release of Cr(VI) to runoff. We compare the relative abilities of the four models to interpret experimental results through maximum likelihood model calibration and four model identification criteria (i.e., the Akaike information criteria [AIC and AICC] and the Bayesian and Kashyap information criteria). Our study results enable us to rank the tested models on the basis of a set of posterior weights assigned to each of them. A classical variance‐based global sensitivity analysis is then performed to assess the relative importance of the uncertain parameters associated with each of the models considered, within subregions of the parameter space. In this context, the modelling strategy resulting from coupling the Langmuir isotherm with a two‐layer solute transfer model is then evaluated as the most skilful for the overall interpretation of both sets of experiments. Our results document that (a) the depth of the mixing layer is the most influential factor for all models tested, with the exception of the Freundlich isotherm, and (b) the total sensitivity of the adsorption parameters varies in time, with a trend to increase as time progresses for all of the models. These results suggest that adsorption has a significant effect on the uncertainty associated with the release of Cr(VI) from the soil to the surface runoff component.  相似文献   
6.
黄子义 《地理教学》2020,(3):62-64,52
随着教学手段和教学方法的现代化,信息技术与课程整合正成为教育改革的研究热点。文章以万维望远镜(WWT)平台为教学媒体,以ASSURE模式为教学设计的理论依据,设计并构建用以指导天文教学准备、实施与评价的教学模式,并将该模式应用于“四季星空”的教学案例中,使用基于信息技术的互动分析编码系统和学生课程反馈调查对教学效果进行分析和评价。研究表明,万维望远镜的使用可以降低教师言语比率,改变传统天文教学中以讲授式为主的教学方式。它适合起点能力较高、对新知识和新技能掌握能力较强的学生,能提高其学习兴趣和积极性,激发其探索宇宙的兴趣,有助于培养学生的科学素养。  相似文献   
7.
Soil salinization, caused by salt migration and accumulation underneath the soil surface, will corrode structures. To analyze the moisture-salt migration and salt precipitation in soil under evaporation conditions, a mathematical model consisting of a series of theoretical equations is briefly presented. The filling effect of precipitated salts on tortuosity factor and evaporation rate are taken into account in relevant equations. Besides, a transition equation to link the solute transport equation before and after salt precipitation is proposed. Meanwhile, a new relative humidity equation deduced from Pitzer ions model is used to modify the vapor transport flux equation. The results show that the calculated values are in good agreement with the published experimental data, especially for the simulation of volume water content and evaporation rate of Toyoura sand, which confirm the reliability and applicability of the proposed model.  相似文献   
8.
1 INTRODUCTION Blazars, including BL Lac objects, highly polarized and optically violently variable quasars,and flat-spectrum radio quasars (FSRQs), are characterized by highly variable non-thermalemission which dominates their characteristics from radio to y-ray bands. The mechanismbelieved to be responsible for their broadband emission is synchrotron radiation followed by in-verse Compton (IC) scattering at higher energies (e.g. Blandford & Konigl 1979). Relativisticbeaming of a jet…  相似文献   
9.
10.
Abstract— It has now been about a decade since the first demonstrations that hypervelocity particles could be captured, partially intact, in aerogel collectors. But the initial promise of a bonanza of partially‐intact extraterrestrial particles, collected in space, has yet to materialize. One of the difficulties that investigators have encountered is that the location, extraction, handling and analysis of very small (10 μm and less) grains, which constitute the vast majority of the captured particles, is challenging and burdensome. Furthermore, current extraction techniques tend to be destructive over large areas of the collectors. Here we describe our efforts to alleviate some of these difficulties. We have learned how to rapidly and efficiently locate captured particles in aerogel collectors, using an automated microscopic scanning system originally developed for experimental nuclear astrophysics. We have learned how to precisely excavate small access tunnels and trenches using an automated micromanipulator and glass microneedles as tools. These excavations are only destructive to the collector in a very small area—this feature may be particularly important for excavations in the precious Stardust collectors. Using actuatable silicon microtweezers, we have learned how to extract and store “naked” particles—essentially free of aerogel—as small as 3 μm in size. We have also developed a technique for extracting particles, along with their terminal tracks, still embedded in small cubical aerogel blocks. We have developed a novel method for storing very small particles in etched nuclear tracks. We have applied these techniques to the extraction and storage of grains captured in aerogel collectors (Particle Impact Experiment, Orbital Debris Collector Experiment, Comet‐99) in low Earth orbit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号