首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   3篇
  国内免费   1篇
测绘学   2篇
大气科学   4篇
地球物理   23篇
地质学   25篇
海洋学   1篇
天文学   67篇
自然地理   6篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   4篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   10篇
  2012年   6篇
  2011年   4篇
  2010年   1篇
  2009年   9篇
  2008年   5篇
  2007年   9篇
  2006年   5篇
  2005年   10篇
  2004年   12篇
  2003年   7篇
  2002年   9篇
  2001年   6篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1996年   2篇
  1995年   1篇
  1987年   1篇
  1984年   2篇
  1981年   1篇
排序方式: 共有128条查询结果,搜索用时 15 毫秒
1.
This paper presents the first glacial chronology for the Lahul Himalaya, Northern India. The oldest glaciation, the Chandra Glacial Stage, is represented by glacially eroded benches at altitudes greater than 4300 m above sea-level. This glaciation was probably of a broad valley type. The second glaciation, the Batal Glacial Stage, is represented by highly weathered and dissected lateral moraines, which are present along the Chandra valley and some of its tributaries. This was an extensive valley glaciation. The third major glaciation, the Kulti Glacial Stage, is represented by well-preserved moraines in the main tributary valleys of the Chandra valley. This represents a less extensive valley glaciation. Two minor glacial advances, the Sonapani I and II, are represented by small sharp-crested moraines, which are within a few hundred metres or few kilometres of the present-day glaciers. The change in style and extent of glaciation is attributed to an increase in aridity throughout the Quaternary, due either to global climatic change or uplift of the Pir Panjal mountains to the south of Lahul, which restricted the northward penetration of the south Asian summer monsoon. © 1996 John Wiley & Sons, Ltd.  相似文献   
2.
3.
There is overwhelming evidence that many local-scale human activities (e.g. fishing) have a deleterious effect on coral reef fish assemblages. Our understanding of how broad social phenomena (e.g. socioeconomic development) affect the diversity and function of coral reef fish assemblages however, is still poor. Here, we use structural equation models to reveal how human population density, socioeconomic development, and market access affect fishing pressure and coral cover to, in turn, explain the diversity and biomass of key functional groups of reef fish assemblages within Solomon Islands. Fishing pressure is predominantly driven by both market access and local population density, and has a clear negative effect on the diversity and function of coral reef fishes. The strong positive effect of market access on fishing pressure makes clear the importance of understanding social-ecological linkages in the context of increasingly connected societies. This study highlights the need to address broad social phenomena rather than focusing on proximate threats such as fishing pressure, to ensure the continued flow of coral reef goods and services in this time of rapid global social and environmental change.  相似文献   
4.
Cenozoic limestones in New Zealand are mainly skeletal grainstones and packstones formed under non-tropical climatic conditions in open marine shelf or ramp environments. Following petrographic analysis of the nature and abundance of the skeletal components in nearly 500 samples of these limestones, a complete linkage cluster analysis identified seven major skeletal assemblages that may be regarded as subdivisions of the single foramol skeletal association defined by Lees and Buller (1972) for temperate-region carbonate deposits. The seven assemblages are given contracted names, as follows: (a) BARNAMOL = barnacle/bivalve-dominated; (b) BIMOL = bivalve-dominated; (c) BRYOMOL = bryozoan/bivalve-dominated; (d) ECHINOFOR = echinoderm/benthic foraminiferal-dominated; (e) NANNOFOR = nannofossil/planktonic foraminiferal-dominated; (f) RHODALGAL = calcareous red algal-dominated; and (g) RHODECHFOR = calcareous red algal/echinoderm/benthic foraminiferal-dominated. A composite triangular classification diagram has been devised for naming the skeletal assemblage of an unknown sample on the basis of its three main skeletal components. The diagram successfully characterises more than 85% of the New Zealand Cenozoic limestone samples and also appears to be applicable for the skeletal assemblage designation of many overseas examples of non-tropical carbonate deposits. Limitations relate mainly to locally common skeletal types (e.g. serpulids, brachiopods) that are presently not incorporated into the New Zealand-based scheme. The general ecological preferences of the main skeletal contributors in each of the seven skeletal assemblages form a basis for relating the assemblages to broad shelf habitats. Consequently, as well as the benefits of providing a more consistent skeletal assemblage terminology for comparative studies between different workers, the scheme can assist with the paleoenvironmental interpretation of non-tropical skeletal carbonate facies.  相似文献   
5.
The isotopic compositions of commercially available herbicides were analyzed to determine their respective 15N, 13C and 37Cl signatures for the purposes of developing a discrete tool for tracing and identifying non-point source contaminants in agricultural watersheds. Findings demonstrate that of the agrochemicals evaluated, chlorine stable isotopes signatures range between δ37Cl = −4.55‰ and +3.40‰, whereas most naturally occurring chlorine stable isotopes signatures, including those of road salt, sewage sludge and fertilizers, vary in a narrow range about the Standard Mean Ocean Chloride (SMOC) between −2.00‰ and +1.00‰. Nitrogen stable isotope values varied widely from δ15N = −10.86‰ to +1.44‰ and carbon stable isotope analysis gave an observed range between δ13C = −37.13‰ and −21.35‰ for the entire suite of agro-chemicals analyzed. When nitrogen, carbon and chlorine stable isotope analyses were compared in a cross-correlation analysis, statistically independent isotopic signatures exist suggesting a new potential tracer tool for identifying herbicides in the environment.  相似文献   
6.
7.
8.
This paper presents the sediment, landform and dynamic context of four avalanche-fed valley glaciers (Khumbu, Imja, Lhotse and Chukhung) in the Mount Everest (Sagarmatha) region of Nepal. All four glaciers have a mantle of debris dominated by sandy boulder-gravel that suppresses melting to an increasing degree towards the snout, leading to a progressive reduction in the overall slope of their longitudinal profile. Prominent lateral–terminal moraine complexes, also comprising sandy bouldergravel, enclose the glaciers. These terminal moraines originally grew by accretion of multiple sedimentary facies of basal glacial and supraglacial origin, probably by folding and thrusting when the glaciers were more dynamic during the Little Ice Age. The four glaciers are in various stages of recession, and demonstrate a range of scenarios from down-wasting of the glacier tongue, through morainedammed lake development, to post-moraine-dam breaching. Khumbu Glacier is at the earliest stage of supraglacial pond formation and shows no sign yet of developing a major lake, although one is likely to develop behind its >250 m high composite terminal moraine. Imja Glacier terminates in a substantial body of water behind a partially ice-cored moraine dam (as determined from geophysical surveys), but morphologically appears unlikely to be an immediate threat. Chukhung Glacier already has a breached moraine and a connected debris fan, and therefore no longer poses a threat. Lhotse Glacier has an inclined, free-draining tongue that precludes hazardous lake development. From the data assembled, a conceptual model, applicable to other Himalayan glaciers, is proposed to explain the development of large, lateral-terminal moraine complexes and associated potentially hazardous moraine dams. – 2008 Elsevier Ltd. All rights reserved.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号