首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   5篇
  国内免费   5篇
测绘学   1篇
大气科学   2篇
地球物理   32篇
地质学   68篇
海洋学   3篇
天文学   1篇
综合类   1篇
自然地理   6篇
  2022年   1篇
  2021年   2篇
  2019年   2篇
  2018年   6篇
  2017年   11篇
  2016年   11篇
  2015年   6篇
  2014年   8篇
  2013年   11篇
  2012年   12篇
  2011年   5篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1987年   1篇
  1984年   2篇
  1982年   1篇
  1971年   1篇
  1970年   1篇
  1968年   2篇
  1965年   1篇
  1964年   1篇
  1960年   1篇
  1956年   1篇
排序方式: 共有114条查询结果,搜索用时 15 毫秒
1.
2.
The geochemical characteristics of two sections—the Permian–Triassic boundary (PTB) Guryul Ravine section, Kashmir Valley, Jammu and Kashmir, India; and the Attargoo section, Spiti Valley, Himachal Pradesh, India—have been studied in the context of provenance, paleo-weathering, and plate tectonic setting. These sections represent the siliciclastic sedimentary sequence from the Tethys Himalaya. The PTB siliciclastic sedimentary sequence in these regions primarily consists of sandstones and shales with variable thickness. Present studied sandstones and shales of both sections had chemical index of alteration values between 65 and 74; such values reveal low-to-moderate degree of chemical weathering. The chemical index of weathering in studied samples ranged from 71 to 94, suggesting a minor K-metasomatism effect on these samples. Plagioclase index of alteration in studied sections ranged from 68 to 92, indicating a moderate degree of weathering of plagioclase feldspars. The provenance discriminant function diagram suggests that the detritus involved in the formation of present studied siliciclastic sedimentary rocks fall in quartzose sedimentary and felsic igneous provenances. These sediments were deposited in a passive continental margin plate tectonic setting according to their location on a Si2O versus K2O/Na2O tectonic setting diagram.  相似文献   
3.
4.
5.
Estimation of spatial extent of soil erosion, one of the most serious forms of land degradation, is critical because soil erosion has serious implications on soil fertility, water ecosystem, crop productivity and landscape beauty. The primary objective of the current study was to assess and map the soil erosion intensity and sedimentation yield of Potohar region of Pakistan. Potohar is the rainfed region with truncated and complex topography lying at the top of the Indus Basin, the world’s largest irrigation networks of canals and barrages. Spatially explicit Revised Universal Soil Loss Equation (RUSLE) Model integrated with Remote Sensing-GIS techniques was used for detecting/mapping of erosion prone areas and quantification of soil losses. The results show that the Potohar region is highly susceptible to soil erosion with an average annual soil loss of 19 tons ha?1 year?1 of which the maximum erosion (70–208 tons ha?1 year?1) was near the river channels and hilly areas. The sediment yield due to the erosion is as high as 148 tons ha?1 year?1 with an average of 4.3 tons ha?1 year?1. It was found that 2.06% of the total area falls under severe soil erosion, 13.34% under high erosion, 15.35% under moderate soil erosion while 69.25% of the area lies in the low (tolerable) soil erosion. Chakwal and Jhelum districts of the region are seriously affected by erosion owing to their topography and soil properties. The information generated in this study is a step forward towards proper planning and implementation of strategies to control the erosion and for protection of natural resources. It is, hence, necessary that suitable water harvesting structures be made to control water to prevent soil erosion and provision of water in the lean season in this region. Tree plantation and other erosion control practices such as strip cropping can also minimize soil erosion in this region.  相似文献   
6.
The seasonal abundance of flagellates has been monitored over a period of 1 year from December2013 to November 2014(divided into 4 conjugative seasons namely winter, spring, summer, and autumn) in an experimental pond located in Rajshahi City Corporation area, Bangladesh. To our knowledge, this study is the first to shed light on the occurrence and possible interrelationships among heterotrophic flagellates(HF),bacteria and zooplankton in Bangladesh and the result obtained by this study will be beneficial for similar water ecosystem all over the world. Standard methods were used to determine the prescribed hydrological parameters and zooplankton cell density. Maximum HF abundance(14 346.00 cells/mL) was found in the spring and the minimum(5 215.00 cells/mL) occurred in the summer. Inverse to HF, significantly(P0.05)higher zooplankton abundance was found during the winter(782.00±47.62 cells/mL) and the lowest value was found in the autumn(448.00±39.15 cells/mL). Whereas similar to the HF, total bacterial abundance was significantly higher during the spring((2.25±1.05)×10~5 cells/mL) and lower in the summer((0.79±0.06)×105 cells/mL). Multivariate analyses(ANOSIM and MDS) have shown significant seasonal differences for cell numbers where MDS ordination plot and cluster analysis based on similarity in the genera abundance of HF revealed overlapping condition between winter and spring. Canonical correspondence analysis(CCA) also showed a distinct separation among the genera based on the prevailing hydrological situation and indicated that temperature, pH, BOD_5, and NO_3~- were the most important environmental variables in determining the observed variation in HF community structure. Among the biological factors, zooplankton showed negative but total bacteria were positively correlated with HF abundance.  相似文献   
7.
Five microearthquake seismographs were used at 11 sites in northern Sinai in the period February 1987 to February 1988 to study the microseismicity of the area around the Maghara coal mine for mine-development studies. A total of 270 events were recorded on 850 records. The magnitude, epicenter and depth of each event were calculated using suitable software for an Egyptian Geological Survey and Mining Authority's (EGSMA) XT computer. The interpretation of the seismic activity in the area is given in view of plate tectonics, the Sinai subplate boundary follows the Gulf of Aqaba and the Dead Sea. The plate and subplate boundaries are presently active, and there seems to be a diffuse zone of deformation between “NW Africa” and “Nubia” affecting the Cairo-Suez district.  相似文献   
8.
In order to understand the flow pattern around a pumping well partially penetrating a vertically extensive aquifer, a specially designed pumping test was carried out in Pakistan. In this paper salient features of the test have been described. The spatial distributions of drawdown have been shown graphically. Some of the preliminary conclusions made from the drawdown pattern include:
  • • The distance beyond which the flow is likely to be horizontal increases with decrease in the degree of aquifer penetration.
  • • In equidistant observation wells open at different depths, (1) the drawdowns tend to merge at larger times, provided the observation point is located within the screened section of the aquifer; (2) the less the depth of penetration is, the earlier the drawdowns start merging; and (3) the initial rate of drawdown near the aquifer top is slow but catches up with time to exceed those at deeper points.
  相似文献   
9.
This paper presents a study on the Wular Lake which is the largest fresh water tectonic lake of Kashmir Valley, India. One hundred and ninety-six (196) water samples and hundred (100) sediment samples (n = 296) have been collected to assess the weathering and Anthropogenic impact on water and sediment chemistry of the lake. The results showed a significant seasonal variability in average concentration of major ions being highest in summer and spring and lower in winter and autumn seasons. The study revealed that lake water is alkaline in nature characterised by medium total dissolved solids and electrical conductivity. The concentration of the major ion towards the lake central showed a decreasing trend from the shore line. The order of major cations and anions was Ca2+ > Mg2+ > Na+ > K+ and HCO3 ? > SO4 2? > Cl?, respectively. The geochemical processes suggested that the chemical composition lake water is mostly influenced by the lithology of the basin (carbonates, silicates and sulphates) which had played a significant role in modifying the hydrogeochemical facies in the form of Ca–HCO3, Mg–HCO3 and hybrid type. Chemical index of alteration values of Wular Lake sediments reflect moderate weathering of the catchment area. Compared to upper continental crust and the post-Archean Shale, the sediments have higher Si, Ti, Mg and Ca contents and lower Al, Fe, Na, K, P, Zn, Pb, Ni, Cu content. Geoaccumulation index (Igeo) and US Environmental Protection Agency sediment quality standards indicated that there is no pollution effect of heavy metals (Zn, Mn, Pb, Ni and Co).The study also suggested that Wular Lake is characterised by both natural and anthropogenic influences.  相似文献   
10.
As wheat represents the main staple food and strategic crop in Egypt and worldwide and since remote sensing satellite imagery is the tool to obtain synoptic, multi-temporal, dynamic, and time-efficient information about any target on the Earth, the main objective of the current study is to use remote sensing satellite imagery to generate remotely sensed empirical preharvest wheat yield prediction models. The main input parameters of these models are spectral data either in the form of spectral reflectance data released from Satellite Pour lObservation de la Terre (SPOT) 4 satellite imagery or in the form of spectral vegetation indices. The other input factor is leaf area index (LAI) that was measured by LAI Plant Canopy Analyzer. The four spectral bands of SPOT4 imagery are green, red, near-infrared, and middle infrared; the five vegetation indices that are forms of ratios between red and near-infrared bands are normalized difference vegetation index, ratio vegetation index, soil-adjusted vegetation index, difference vegetation index, and infrared percentage vegetation index. Another vegetation index is green vegetation index that is calculated through a ratio between green band and near-infrared band. Each of the above-mentioned factors was used as an input factor against wheat yield to generate wheat yield prediction models. All generated models are site-specific limited to the area and the environment and could be applicable under similar conditions in Egypt. The study was carried out in Sakha experimental station by using the dataset from two wheat season 2007/2008 and 2009/2010. The total wheat area was 1.3 ha cultivated by Sakha 93 cultivar. Modeling and validation process were carried out for each season independently. Modeled yield was tested against reported yield through two common statistical tests; the standard error of estimate between modeled yield and reported yield, and the correlation coefficient for a direct regression analysis between modeled and reported yield with each generated model. Generally, as shown from the correlation coefficient of the generated models, green and middle infrared bands did not show good accuracy to predict wheat yield, while the other spectral bands (red and near-infrared) bands showed high accuracy and sufficiency to predict yield. This was proven through the correlation coefficient of the generated models and through the generated models with the wheat crops for the two seasons. Accordingly, the green vegetation index that is generally calculated from green and near-infrared bands showed relatively lower accuracy than the rest of the vegetation index models that are calculated from red and near-infrared bands. LAI showed high accuracy to predict yield as shown from the statistical analysis. The models are applicable after 90 days from sowing stage and applicable in similar regions with the same conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号