首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   1篇
地质学   2篇
海洋学   2篇
自然地理   1篇
  2009年   1篇
  2007年   1篇
  2005年   2篇
  1998年   1篇
  1976年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
The Ulleung Basin (Tsushima Basin) in the southwestern East Sea (Japan Sea) is floored by a crust whose affinity is not known whether oceanic or thinned continental. This ambiguity resulted in unconstrained mechanisms of basin evolution. The present work attempts to define the nature of the crust of the Ulleung Basin and its tectonic evolution using seismic wide-angle reflection and refraction data recorded on ocean bottom seismometers (OBSs). Although the thickness of (10 km) of the crust is greater than typical oceanic crust, tau-p analysis of OBS data and forward modeling by 2-D ray tracing suggest that it is oceanic in character: (1) the crust consists of laterally consistent upper and lower layers that are typical of oceanic layers 2 and 3 in seismic velocity and gradient distribution and (2) layer 2C, the transition between layer 2 and layer 3 in oceanic crust, is manifested by a continuous velocity increase from 5.7 to 6.3 km/s over the thickness interval of about 1 km between the upper and lower layers. Therefore it is not likely that the Ulleung Basin was formed by the crustal extension of the southwestern Japan Arc where crustal structure is typically continental. Instead, the thickness of the crust and its velocity structure suggest that the Ulleung Basin was formed by seafloor spreading in a region of hotter than normal mantle surrounding a distant mantle plume, not directly above the core of the plume. It seems that the mantle plume was located in northeast China. This suggestion is consistent with geochemical data that indicate the influence of a mantle plume on the production of volcanic rocks in and around the Ulleung Basin. Thus we propose that the opening models of the southwestern East Sea should incorporate seafloor spreading and the influence of a mantle plume rather than the extension of the crust of the Japan Arc.  相似文献   
2.
Seon-Gyu  Choi  V. J. Rajesh  Jieun  Seo  Jung-Woo  Park  Chang-Whan  Oh  Sang-Joon  Pak  Sung-Won  Kim 《Island Arc》2009,18(2):266-281
Collision between the North and South China continental blocks began in the Korean peninsula during the Permian (290–260 Ma). The Haemi area in the Hongseong collision belt (proposed as the eastern extension in South Korea of the Dabie–Sulu collision zone of China) within the Gyeonggi Massif comprises post-collisional high Ba–Sr granite with intermediate enclaves that intruded into the Precambrian rocks. The intermediate enclaves have a shoshonitic affinity whereas the granite is a high-K calc-alkaline variety. The chondrite-normalized rare earth element (REE) pattern with relative enrichment of LREE over HREE and absence of a significant negative Eu anomaly typifies both enclaves and granite. Geochemical similarities of enclaves and granite are attributed to the involvement of enriched mantle sources in their genesis. However, dominant crustal components were involved in the formation of high Ba–Sr granites. A granite crystallization age of 233 ± 2 Ma was obtained from SHRIMP U–Pb zircon dating. This age is slightly younger than the Triassic collision event in the Hongseong Belt. Geochemical data, U–Pb zircon age, and regional tectonics indicate that the Haemi high Ba–Sr granite formed in a post-collisional tectonic environment. A Mesozoic post-collisional lithospheric delamination model can account for the genesis of high Ba–Sr granite in the Haemi area.  相似文献   
3.
Removal characteristics of polycyclic aromatic hydrocarbons (PAHs) from low-permeable soil using a surfactant-enhanced electrokinetic (EK) process were investigated. Phenanthrene and kaolinite were selected as a representative PAH and a model soil. A nonionic surfactant, alkyl polyglucosides (APG), and an anionic surfactant, Calfax 16L-35, were used to enhance the solubility of phenanthrene. The two surfactants showed similar solubilization capacities for phenanthrene, while only APG was affected by sorption. When surfactants were applied to EK process, the electrical potential gradient was lower than that of water. The electroosmotic flow (EOF) decreased as the concentration of surfactant increased. In the case of APG, the removal efficiency of phenanthrene increased with the surfactant concentration. The APG micelles containing phenanthrene easily migrated to the cathode reservoir by EOF. On the other hand, Calfax 16L-35 did not enhance the removal efficiency even at the highest concentration, because most of Calfax 16L-35 remained in soil, and only small amount existed in effluent. It was thought that, during electrokinetic process, Calfax 16L-35 was adsorbed onto soil and the migration of the surfactant from cathode to anode was superior to EOF due to anionic charges of Calfax 16L-35. A nonionic surfactant, APG, seems to be suitable for surfactant-enhanced electrokinetic remediation.  相似文献   
4.
The bottom sediments of Jinhae Bay area contain, on average, 45 % illite, 23 % kaolinite, 17 % intergrade clay, 10 % chlorite, and 5 % smectite. The geographical distribution of the clay minerals shows, in general, an it crease in illite, a decrease in kaolinite, and a slight decrease in chlorite seawards. The distributional trends of smectite and intergrade clay are irregular. The clay fractions of the sediments of Jinhae Bay are supplied from stream-borne sediments and are mixed with sediments transported landwards from the East China Sea. Local erosion and redeposition of the clay fractions of the bottom sediments is caused by rapid tidal currents.  相似文献   
5.
Saltation is a major mechanism for the transport of soil particles. In the present study, we carried out wind tunnel tests to examine the saltating trajectories of two types of natural sand collected from a beach (diameter, d = 300–500 μm and 200–300 μm respectively) as well as sand from the Taklimakan desert (d = 100–125 μm) in an atmospheric boundary layer. Consecutive images of saltating particles were recorded using a high-speed digital camera at a rate of 2000 fps with a spatial resolution of 1024 × 1024 pixels. The high temporal resolution of the acquired images enabled us to study the particle motion very close to the surface. The saltating particle trajectories were reconstructed from consecutive images, and the physical quantities characterizing the initial and final stages of the particle flight in the windward direction at friction velocities of about 10%–25% above the threshold friction velocity (u / ut = 1.11–1.26) were analyzed statistically. In addition, the transverse deviation of the saltating particles from the main streamwise direction was evaluated. The results shed new light on the complicated motions involved in sand saltation and should prove useful in the evaluation and formulation of theoretical models.  相似文献   
6.
Feasibility of electrokinetic (EK) process combined with Fenton-like reaction was investigated for the removal of phenanthrene in a two-dimensional cell. Sandy soil and bentonite were selected as a model soil and a filling material to inhibit the leak of electrolyte solution within the electrode reservoirs into the soil by hydraulic pressure difference, respectively. The effects of parameters including current, electroosmotic flow (EOF), electrolyte pH, and moisture content on the removal efficiency were examined under constant voltage.

At the end of operation for 21 days, the concentration of phenanthrene near the anode was lower than the other positions of soil specimen and increased gradually towards the cathode because hydrogen peroxide solution was supplied from anode to cathode region following the direction of EOF. The concentration of phenanthrene at the bottom soil was lower than that at the top soil. Because capillary attraction in the sandy soil with high porosity was too low to maintain appropriate moisture at the top of the cell, EOF moved through the bottom soil with higher moisture content. Overall removal efficiency at 140 V was 81.6%, which was higher than 68.9% at 100 V because total EOF increased by a factor of 1.5 upon increase of the voltage from 100 to 140 V. In addition, power consumptions at 100 and 140 V were 7.2 and 19.4 kWh, respectively.  相似文献   

1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号