首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
地球物理   9篇
地质学   4篇
  2021年   1篇
  2020年   2篇
  2016年   2篇
  2011年   2篇
  2010年   2篇
  2005年   2篇
  2001年   1篇
  1994年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
Field, hand specimen, and microscopic investigations alongside X-ray diffraction analyses revealed four types of hydrothermal alteration (Type-A, -B, -C, and -D) based on the mode of occurrence of altered rocks and alteration mineral assemblage at Hakusui-kyo and Horai-kyo along the Arima-Takatsuki Tectonic Line (ATTL) in western Japan. Type-A alteration locally occurred as gray alteration halos with sulfide minerals. Type-B and -C alterations were confined to fault gouge veins and occurred as greenish-gray veins and brown veins, respectively. Type-C alteration crosscut Type-B alteration. These alterations were associated with a number of granitic fragments including cohesive breccia and micrographic facies. Type-D alteration occurred locally in brown sediments. Different mineralogical features in the four alterations are summarized as (Type-A) illite; (Type-B) chlorite; (Type-C) limonite (Fe3+ hydroxides and goethite) and calcite; and (Type-D) limonite. We propose that the alterations can be broadly divided into Paleocene hydrothermal alteration (Type-A) and post-Late Miocene hydrothermal alteration (Type-B, -C, and -D): Type-A alteration occurred at approximately 200 °C during hydrothermal activity after a granitic intrusion in Late Cretaceous; Type-B, -C and -D alterations occurred under hydrothermal activity accompanying deep fluids with repeated ascents invoked by the seismicity of the ATTL after the Late Miocene. The fluids may have been the “Arima-type thermal waters” (i.e., mixtures of convective groundwater and Na-Ca-Cl-HCO3-type fluids). Type-B alteration occurred in fractures at depths where the temperature was ≥150 °C. Type-C alteration overprinted Type-B alteration as a result of mixing of new deep fluids and descending oxidized meteoric water near the surface. Fe3+ hydroxides and calcite precipitated from the fluids due to the oxidation of Fe2+ and the degassing of CO2, respectively, at ambient to near-boiling temperatures. When the ascending fluids gushed out from the fractures, they generated Type-D alteration at the surface under similar temperature conditions due to the oxidation of Fe2+.  相似文献   
2.
Phreatic eruptions occurred at the Meakandake volcano in 1988, 1996, 1998, 2006, and 2008. We conducted geochemical surveillance that included measurements of temperature, SO2 emission rates, and volcanic gas composition from 2003 to 2008 at the Nakamachineshiri (NM), Northwest (NW), and Akanuma (AK) fumarolic areas, and the 96–1 vent, where historical eruptions had occurred. The elemental compositions of the gases discharged from the different areas are similar compared with the large variations observed in volcanic gases discharged from subduction zones. All the gases showed high apparent equilibrium temperatures, suggesting that all these gases originated from a common magmatic gas. The gases discharged from each area also exhibited different characteristics, which are probably the results of differences in the conditions of meteoric water mixing, quenching of chemical reactions, and vapor-liquid separation. The highest apparent equilibrium temperatures (about 500°C) were observed in the case of NW fumarolic gases, despite the low outlet temperature of about 100°C at these fumaroles. Since the NW fumaroles were formed as a result of the 2006 phreatic eruption, the high-temperature gas supply to the NW fumarole suggests that the phreatic eruption was caused by the ascent of high-temperature magmatic gases. The temperatures, compositions, and emission rates of the NM and 96–1 gases did not show any appreciable change after the 2006 eruption, indicating that each fumarolic system had a separate magmatic-hydrothermal system. The temperatures, compositions, and emission rates of the NM fumarolic gases were apparently constant, and these fumaroles are inferred to be formed by the evaporation of a hydrothermal system with a constant temperature of about 300°C. The 96–1 gas compositions showed large changes during continuous temperature decrease from 390° to 190°C occurred from 2003 to 2008, but the sulfur gas emission rates were almost constant at about four tons/day. At the 96–1 vent, the SO2/H2S ratio decreased, while the H2/H2O ratio remained almost constant; this was probably caused by the rock-buffer controlled chemical reaction during the temperature decrease.  相似文献   
3.
To understand deep groundwater flow systems and their interaction with CO2 emanated from magma at depth in a volcanic edifice, deep groundwater samples were collected from hot spring wells in the Aso volcanic area for hydrogen, oxygen and carbon isotope analyses and measurements of the stable carbon isotope ratios and concentrations of dissolved inorganic carbon (DIC). Relations between the stable carbon isotope ratio (δ13CDIC) and DIC concentrations of the sampled waters show that magma-derived CO2 mixed into the deep groundwater. Furthermore, groundwaters of deeper areas, except samples from fumarolic areas, show higher δ13CDIC values. The waters' stable hydrogen and oxygen isotope ratios (δD and δ18O) reflect the meteoric-water origin of that region's deep groundwater. A negative correlation was found between the altitude of the well bottom and the altitude of groundwater recharge as calculated using the equation of the recharge-water line and δD value. This applies especially in the Aso-dani area, where deeper groundwater correlates with higher recharge. Groundwater recharged at high altitude has higher δ13CDIC of than groundwater recharged at low altitude, strongly suggesting that magmatic CO2 is present to a much greater degree in deeper groundwater. These results indicate that magmatic CO2 mixes into deeper groundwater flowing nearer the magma conduit or chamber.  相似文献   
4.
Two distinctive magmatic fluids were recognized in the Tatun volcanic group (TVG), Taiwan. One is a relatively reduced fluid represented by the fumarolic gases at Hsiao-you-ken (HYK) geothermal field. Another is an oxidized fluid containing high concentrations of HCl represented by the fumarolic gases at Da-you-ken (DYK). An intermediate gas was recognized at Gung-tze-ping (GTP) and She-hung-ping (SHP). The fumarolic gases at HYK and GTP possess the features of so-called primary steam generated on mixing of magmatic gas and meteoric groundwater. The fumarolic gases at DYK are a simple mixture between magmatic gas and water vapor of meteoric origin. The CO2/H2O molar ratio of the magmatic component in the fumarolic gases at DYK was estimated to be 0.018, meanwhile it was estimated to be 0.027 for the fumarolic gases at HYK and GTP, suggesting the magma beneath DYK is depleted in volatiles relative to the magma beneath HYK and GTP. The estimated CO2/H2O ratio for the magmatic component is comparable to that of some active volcanoes in Japan, suggesting the enrichment of volatiles in the magmas beneath TVG.  相似文献   
5.
Excessive degassing of Izu-Oshima volcano: magma convection in a conduit   总被引:2,自引:0,他引:2  
Excess degassing of magmatic H2O and SO2 was observed at Izu-Oshima volcano during its latest degassing activity from January 1988 to March 1990. The minimum production rate for degassed magma was calculated to be about 1×104 kg/s using emission rates of magmatic H2O and SO2, and H2O and S contents of the magma. The minimum total volume of magma degassed during the 27-month period is estimated to be 2.6×108 m3. This volume is 20 times larger than that of the magma ejected during the 1986 summit eruption. Convective transport of magma through a conduit is proposed as the mechanism that causes degassing from a magma reservoir at several kilometers depth. The magma transport rate is quantitatively evaluated based on two fluid-dynamic models: Poiseuille flow in a concentric double-walled pipe, and ascent of non-degassed magma spheres through a conduit filled with degassed magma. This process is further tested for an andesitic volcano and is concluded to be a common process for volcanoes that discharge excess volatiles.  相似文献   
6.
Acta Geotechnica - Water retention characteristics are important for modeling the mechanical and hydraulic behavior of partially saturated sand. It is well known that the soil water characteristic...  相似文献   
7.
Kido  Ryunosuke  Higo  Yosuke 《Acta Geotechnica》2020,15(11):3055-3073
Acta Geotechnica - This paper presents a set of triaxial compression tests on partially saturated dense sands to clarify the microscopic characteristics and their link to the macroscopic responses....  相似文献   
8.
9.
10.
Chemical analyses of 30 melt inclusions from Satsuma-Iwojima volcano, Japan, were carried out to investigate volatile evolution in a magma chamber beneath the volcano from about 6300 yr BP to the present. Large variations in volatile concentrations of melts were observed. (1) Water concentration of rhyolitic melts decreases with time; 3–4.6 wt.% at the time of latest caldera-forming eruption of Takeshima pyroclastic flow deposit (ca. 6300 yr BP), 3 wt.% for small pyroclastic flow (ca. 1300 yr BP) of Iwodake, post-caldera rhyolitic dome, and 0.7–1.4 wt.% for submarine lava eruption (Showa-Iwojima) in 1934. (2) Rhyolitic melts of the Takeshima and Iwodake eruptions contained CO2 of less than 40 ppm, while the Showa-Iwojima melt has higher CO2 concentration of up to 140 ppm. (3) Water and CO2 concentrations of basaltic to andesitic melt of Inamuradake, a post-caldera basaltic scoria cone, are 1.2–2.8 wt.% and ≤290 ppm, respectively.Volatile evolution in the magma chamber is interpreted as follows: (1) the rhyolitic magma at the time of the latest caldera-forming eruption (ca. 6300 yr BP) was gas-saturated due to pressure variation in the magma chamber because the large variation in water concentration of the melt was attributed to exsolution of volatile in the magma prior to the eruption. Iwodake eruption (ca. 1300 yr BP) was caused by a remnant of the caldera-forming rhyolitic magma, suggested from the similarity of major element composition between these magmas. (2) Volatile composition of the Showa-Iwojima rhyolitic melt agrees with that of magmatic gases presently discharging from a summit of Iwodake, indicating the low pressure degassing condition. (3) The degassing of the magma chamber by magma convection in a conduit of Iwodake during non-eruptive but active degassing period for longer than 800 years decreased water concentration of the rhyolitic magma. (4) Geological and petrological observations indicate that a stratified magma chamber, which consists of a lower basaltic layer and an upper rhyolitic layer, might have existed during the post-caldera stage. Addition of CO2 from the underlying basaltic magma to the upper gas-undersaturated (degassed) rhyolitic magma increased CO2 concentration of the rhyolitic magma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号