首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
大气科学   2篇
地球物理   1篇
  2019年   1篇
  1980年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
The barotropic, quasi-geostrophic vorticity equation describing large scale, rotating flows over zonal relief supports nonlinear permanent form solutions, namely nonlinear topographic Rossby waves. Through an analytical theory, these solutions have been shown to be neutrally stable to infinitesimal perturbations.Numerical algorithms, which necessarily truncate the infinite number of degrees of freedom of any continuum model to a finite number, are capable of reproducing the numerical equivalent of these form-preserving solutions. Moreover, these numerical solutions are shown to preserve their shape throughout the numerical experiment not only in the limit of small amplitude, but also for high amplitude (Rossby number → O(1)).Through numerical simulation, the stability analysis is carried far beyond the analytical limit of infinitesimal perturbations. The solutions maintain their stability in agreement with the analytical theory, up to perturbations having intensities almost of the same order as the solutions themselves. For higher-amplitude perturbations, the solutions break up and typical turbulent behavior ensues. The passage from wave-like to turbulent behavior, upon surpassing a critical perturbation value, can be observed in the sudden loss of phase locking of the permanent solution Fourier modes.  相似文献   
2.
Nonlinear permanent form solutions have been found for the barotropic, quasi-geostrophic divergenceless vorticity equation describing large scale, rotating flows over zonal relief. In the linear limit these solutions are topographic Rossby waves. The analytical procedure is an expansion in two small dimensionless parameters, an amplitude parameter (the Rossby number) and the aspect ratio between North-South (cross-relief) and East-West length scales. Permanent form solutions exist when these two parameters, and the related effects of dispersion and nonlinearity, mutually balance. By the same expansion procedure, an analytical linearized stability theory has been formulated which proves the neutral stability of these solutions to infinitesimal, two-dimensional perturbations.  相似文献   
3.
Water Resources - Reconnaissance and conceptualization of the system are the first steps to perform an integrated assessment study and step towards sustainability. This paper focuses on the...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号