首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
大气科学   2篇
地球物理   4篇
地质学   17篇
综合类   2篇
自然地理   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   7篇
  2015年   1篇
  2014年   5篇
  2013年   3篇
  2012年   1篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
排序方式: 共有26条查询结果,搜索用时 93 毫秒
1.
Dhananjay  Regmi  Teiji  Watanabe 《Island Arc》2005,14(4):400-409
Abstract   The rates of the accumulated and continuous displacement of solifluction lobes in the Kangchenjunga area, eastern Nepal Himalaya, were determined using glass fiber tubes and a strain probe. Ground temperature, precipitation and soil moisture were monitored at two sites, whose altitude differed by approximately 100 m, to understand the solifluction process. The average movement rate of the glass fiber tubes on a 31° slope at altitudes of 5412–5414 m a.s.l. was approximately 11 mm/year, being almost threefold greater than that observed on a 22° slope at 5322–5325 ma.s.l. There was no significant difference in the depth of displacement at these sites. The continuous displacement measurement near the ground surface at 5414 m showed permanent downslope movement from early July. Such movement may be attributed to additional moisture supply during the monsoon season. The amplitude of the displacement cycle was highest at the ground surface, and decreased to virtually zero at and below 20 cm in depth. Probable factors leading to the relatively slow rates of downslope displacement at the surface and depth at the studied altitudes are the lack of concurrence of the freeze–thaw cycles and the high moisture condition in the soil, and the low moisture retention capacity of the soil because of steep slopes and superficial desiccation. The rate of displacement may be more pronounced at altitudes above 5600 m because of the freeze–thaw cycles during the summer season.  相似文献   
2.
3.
4.
Nepal was hit by a 7.8 magnitude earthquake on 25th April, 2015. The main shock and many large aftershocks generated a large number of coseismic landslips in central Nepal. We have developed a landslide susceptibility map of the affected region based on the coseismic landslides collected from remotely sensed data and fieldwork, using bivariate statistical model with different landslide causative factors. From the investigation, it is observed that most of the coseismic landslides are independent of previous landslides. Out of 3,716 mapped landslides, we used 80% of them to develop a susceptibility map and the remaining 20% were taken for validating the model. A total of 11 different landslide-influencing parameters were considered. These include slope gradient, slope aspect, plan curvature, elevation, relative relief, Peak Ground Acceleration (PGA), distance from epicenters of the mainshock and major aftershocks, lithology, distance of the landslide from the fault, fold, and drainage line. The success rate of 87.66% and the prediction rate of 86.87% indicate that the model is in good agreement between the developed susceptibility map and the existing landslides data. PGA, lithology, slope angle and elevation have played a major role in triggering the coseismic mass movements. This susceptibility map can be used for relocating the people in the affected regions as well as for future land development.  相似文献   
5.
The Kathmandu Basin in Nepal contains up to 550 m of Pliocene-Quaternary fluvio-lacustrine sediments which have formed a dual aquifer system. The unconfined sand and gravel aquifer is separated by a clay aquitard, up to 200 m thick, from the deeper, confined aquifer, comprised of Pliocene sand and gravel beds, intercalated with clay, peat, and lignite. The confined aquifer currently provides an important water supply to the central urban area but there are increasing concerns about its sustainability due to overexploitation. A limited number of determinations of the radioisotope 36Cl have been made on bore waters in the basin, allowing us to postulate on the age of ground water in the deeper, confined aquifer. Ground water evolution scenarios based on radioisotope decay, gradual dissolution of formational salts as the ground waters move downgradient, and flow velocity estimations produce comparable ground water ages for the deep waters, ranging from 200,000 to 400,000 years. From these ages, we deduce a mean ground water flow velocity of only 45 mm/year from recharge in the northeast to the main extraction region 15 km to the southwest. We thus estimate current recharge at about 5 to 15 mm/year, contributing 40,000 to 1.2 million m3/year to the ground water system. Current ground water extraction is estimated to be 20 times this amount. The low specific discharge confirms that the resource is being mined, and, based on current projections, reserves will be used up within 100 years.  相似文献   
6.
The Paonia-McClure Pass area of Colorado has been recognized as a region highly susceptible to mass movement. Because of the dynamic nature of this landscape, accurate methods are needed to predict susceptibility to movement of these slopes. The area was evaluated by coupling a geographic information system (GIS) with logistic regression methods to assess susceptibility to landslides. We mapped 735 shallow landslides in the area. Seventeen factors, as predictor variables of landslides, were mapped from aerial photographs, available public data archives, ETM + satellite data, published literature, and frequent field surveys. A logistic regression model was run using landslides as the dependent factor and landslide-causing factors as independent factors (covariates). Landslide data were sampled from the landslide masses, landslide scarps, center of mass of the landslides, and center of scarp of the landslides, and an equal amount of data were collected from areas void of discernible mass movement. Models of susceptibility to landslides for each sampling technique were developed first. Second, landslides were classified as debris flows, debris slides, rock slides, and soil slides and then models of susceptibility to landslides were created for each type of landslide. The prediction accuracies of each model were compared using the Receiver Operating Characteristic (ROC) curve technique. The model, using samples from landslide scarps, has the highest prediction accuracy (85 %), and the model, using samples from landslide mass centers, has the lowest prediction accuracy (83 %) among the models developed from the four techniques of data sampling. Likewise, the model developed for debris slides has the highest prediction accuracy (92 %), and the model developed for soil slides has the lowest prediction accuracy (83 %) among the four types of landslides. Furthermore, prediction from a model developed by combining the four models of the four types of landslides (86 %) is better than the prediction from a model developed by using all landslides together (85 %).  相似文献   
7.
The Mugling–Narayanghat road section falls within the Lesser Himalaya and Siwalik zones of Central Nepal Himalaya and is highly deformed by the presence of numerous faults and folds. Over the years, this road section and its surrounding area have experienced repeated landslide activities. For that reason, landslide susceptibility zonation is essential for roadside slope disaster management and for planning further development activities. The main goal of this study was to investigate the application of the frequency ratio (FR), statistical index (SI), and weights-of-evidence (WoE) approaches for landslide susceptibility mapping of this road section and its surrounding area. For this purpose, the input layers of the landslide conditioning factors were prepared in the first stage. A landslide inventory map was prepared using earlier reports, aerial photographs interpretation, and multiple field surveys. A total of 438 landslide locations were detected. Out these, 295 (67 %) landslides were randomly selected as training data for the modeling using FR, SI, and WoE models and the remaining 143 (33 %) were used for the validation purposes. The landslide conditioning factors considered for the study area are slope gradient, slope aspect, plan curvature, altitude, stream power index, topographic wetness index, lithology, land use, distance from faults, distance from rivers, and distance from highway. The results were validated using area under the curve (AUC) analysis. From the analysis, it is seen that the FR model with a success rate of 76.8 % and predictive accuracy of 75.4 % performs better than WoE (success rate, 75.6 %; predictive accuracy, 74.9 %) and SI (success rate, 75.5 %; predictive accuracy, 74.6 %) models. Overall, all the models showed almost similar results. The resultant susceptibility maps can be useful for general land use planning.  相似文献   
8.
The role of mafic–felsic magma mixing in the formation of granites is controversial. Field evidence in many granite plutons undoubtedly implies interaction of mafic (basaltic–intermediate) magma with (usually) much more abundant granitic magma, but the extent of such mixing and its effect on overall chemical features of the host intrusion are unclear. Late Devonian I-type granitoids of the Tynong Province in the western Lachlan Fold Belt, southeast Australia, show typical evidence for magma mingling and mixing, such as small dioritic stocks, hybrid zones with local host granite and ubiquitous microgranitoid enclaves. The latter commonly have irregular boundaries and show textural features characteristic of hybridisation, e.g. xenocrysts of granitic quartz and K-feldspars, rapakivi and antirapakivi textures, quartz and feldspar ocelli, and acicular apatite. Linear (well defined to diffuse) compositional trends for granites, hybrid zones and enclaves have been attributed to magma mixing but could also be explained by other mechanisms. Magmatic zircons of the Tynong and Toorongo granodiorites yield U–Pb zircon ages consistent with the known ca 370 Ma age of the province and preserve relatively unevolved ?Hf (averages for three samples are +6.9, +4.3 and +3.9). The range in zircon ?Hf in two of the three analysed samples (8.8 and 10.1 ?Hf units) exceeds that expected from a single homogeneous population (~4 units) and suggests considerable Hf isotopic heterogeneity in the melt from which the zircon formed, consistent with syn-intrusion magma mixing. Correlated whole-rock Sr–Nd isotope data for the Tynong Province granitoids show a considerable range (0.7049–0.7074, ?Nd +1.2 to –4.7), which may map the hybridisation between a mafic magma and possibly multiple crustal magmas. Major-element variations for host granite, hybrid zones and enclaves in the large Tynong granodiorite show correlations with major-element compositions of the type expected from mixing of contrasting mafic and felsic magmas. However, chemical–isotopic correlations are poorly developed for the province as a whole, especially for 87Sr/86Sr. In a magma mixing model, such complexities could be explained in terms of a dynamic mixing/mingling environment, with multiple mixing events and subsequent interactions between hybrids and superimposed fractional crystallisation. The results indicate that features plausibly attributed to mafic–felsic magma mixing exist at all scales within this granite province and suggest a major role for magma mixing/mingling in the formation of I-type granites.  相似文献   
9.
The 2015 Mw7.8 Gorkha earthquake triggered thousands of landslides of various types scattered over a large area. In the current study, we utilized pre- and post-earthquake high-resolution satellite imagery to compile two landslide inventories before and after earthquake and prepared three landslide susceptibility maps within 404 km2 area using frequency ratio (FR) model. From the study, we could map about 519 landslides including 178 pre-earthquake slides and 341 coseismic slides were identified. This study investigated the relationship between landslide occurrence and landslide causative factors, i.e., slope, aspect, altitude, plan curvature, lithology, land use, distance from streams, distance from road, distance from faults, and peak ground acceleration. The analysis showed that the majority of landslides both pre-earthquake and coseismic occurred at slope >30°, preferably in S, SE, and SW directions and within altitude ranging from 1000 to 1500 m and 1500 to 3500 m. Scatter plots between number of landslides per km?2 (LN) and percentage of landslide area (LA) and causative factors indicate that slope is the most influencing factor followed by lithology and PGA for the landslide formation. Higher landslide susceptibility before earthquake is observed along the road and rivers, whereas landslides after earthquake are triggered at steeper slopes and at higher altitudes. Combined susceptibility map indicates the effect of topography, geology, and land cover in the triggering of landslides in the entire basin. The resultant landslide susceptibility maps are verified through AUC showing success rates of 78, 81, and 77%, respectively. These susceptibility maps are helpful for engineers and planners for future development work in the landslide prone area.  相似文献   
10.
Secondary magnetic remanences residing in pyrrhotite and anisotropy of magnetic susceptibility (AMS) were studied in low-grade metamorphic carbonates of the Tethyan Himalaya in Nar/Phu valley (central Nepal) and used for interpretation of tectonic deformations. The characteristic remanence (ChRM) is likely of thermomagnetic origin related to post-peak metamorphic cooling occurring after the Eohimalayan phase (35–32 Ma). The ChRM postdates small-scale folding (main Himalayan folding F1 and F2) as shown by a negative fold test of site mean directions at 99% confidence level, and has been probably acquired between 32 and 25 Ma. Late-orogenic long-wavelength folding associated with the Chako antiform (CA) is recorded by the spatial dispersion of ChRM directions and the distribution of the main axes of the AMS tensor. The mean tilting of the ChRM direction since remanence acquisition (≈20–30°) approximately coincides with the tilting of the CA (31°) at the study area indicating that the pyrrhotite remanence predates the CA (CA formed at <18 Ma according to preliminary U/Pb dating). However, comparison of tilt angles of remanence directions and AMS tensor axes suggests that remanence acquisition was not completed before the onset of the CA formation. This could imply a younger age (Early Miocene or even younger) of the ChRM. Using the distribution of remanence directions along a small-circle as well as the distribution of AMS tensor axes, a clockwise mean rotation of 16° is obtained for a remanence age of ≈30 Ma. An Early Miocene remanence age would not change this result substantially. Compilation of rotations in the Tethyan Himalaya deduced from secondary pyrrhotite remanences reveals an increasing clockwise rotation from the Hidden valley in the W to the Shiar valley in the E (≈150 km distance), incompatible with an oroclinal bending model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号