首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
地球物理   18篇
地质学   4篇
自然地理   1篇
  2016年   2篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2008年   1篇
  2007年   2篇
  2005年   3篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1996年   2篇
  1995年   1篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
2.
Several source parameters (source dimensions, slip, particle velocity, static and dynamic stress drop) are determined for the moderate-size October 27th, 2004 (MW = 5.8), and the large August 30th, 1986 (MW = 7.1) and March 4th, 1977 (MW = 7.4) Vrancea (Romania) intermediate-depth earthquakes. For this purpose, the empirical Green's functions method of Irikura [e.g. Irikura, K. (1983). Semi-Empirical Estimation of Strong Ground Motions during Large Earthquakes. Bull. Dis. Prev. Res. Inst., Kyoto Univ., 33, Part 2, No. 298, 63–104., Irikura, K. (1986). Prediction of strong acceleration motions using empirical Green's function, in Proceedings of the 7th Japan earthquake engineering symposium, 151–156., Irikura, K. (1999). Techniques for the simulation of strong ground motion and deterministic seismic hazard analysis, in Proceedings of the advanced study course seismotectonic and microzonation techniques in earthquake engineering: integrated training in earthquake risk reduction practices, Kefallinia, 453–554.] is used to generate synthetic time series from recordings of smaller events (with 4 ≤ MW ≤ 5) in order to estimate several parameters characterizing the so-called strong motion generation area, which is defined as an extended area with homogeneous slip and rise time and, for crustal earthquakes, corresponds to an asperity of about 100 bar stress release [Miyake, H., T. Iwata and K. Irikura (2003). Source characterization for broadband ground-motion simulation: Kinematic heterogeneous source model and strong motion generation area. Bull. Seism. Soc. Am., 93, 2531–2545.] The parameters are obtained by acceleration envelope and displacement waveform inversion for the 2004 and 1986 events and MSK intensity pattern inversion for the 1977 event using a genetic algorithm. The strong motion recordings of the analyzed Vrancea earthquakes as well as the MSK intensity pattern of the 1977 earthquake can be well reproduced using relatively small strong motion generation areas, which corresponds to small asperities with high stress drops (300–1200 bar) and high particle velocities (3–5 m/s). These results imply a very efficient high-frequency radiation, which has to be taken into account for strong ground motion prediction, and indicate that the intermediate-depth Vrancea earthquakes are inherently different from crustal events.  相似文献   
3.
The Vrancea seismic region contains an isolated cluster of events beneath the Carpathian Arc Bend in Romania, dipping to about 200 km depth. Seismic activity mainly occurs at intermediate depths (h > 60 km). The main goal of the paper is to perform an in-depth, complex analysis of the occurrence times of these intermediate-depth events. We also try to show the versatility of the methods used to characterize different aspects of the seismicity evolution and to offer a user-friendly software toolbox to do most of the related computations. The earthquake catalog used in this study spans from 1974 to 2002 and includes only the intermediate-depth events. In the first part of the paper, we analyze the multifractal characteristics of the temporal distribution of earthquakes. The study reveals two distinct scaling regimes. At small scales we found a clear nonhomogeneous, multifractal pattern, while at large scales the temporal distribution of events shows a monofractal, and close to Poissonian (random), behavior. The multifractal behavior at small scales (minutes-hours) is shown to be clearly an effect of the short aftershock sequences that occurred after some major Vrancea earthquakes. In the second part of the paper we analyze whether our temporal series shows a persistent (or anti-persistent) long-term behavior, by using the Detrended Fluctuation Analysis (DFA) method. The results suggest that the analyzed temporal series of Vrancea earthquakes is a non-correlated process. In part three of the paper we seek to determine whether the dynamics of our earthquake system (described by the occurrence time of Vrancea earthquakes) is deterministically chaotic, deriving from a rather simple evolution law, or whether it is stochastic and is generated by a system that possesses many degrees of freedom. The results suggest that our signal is stochastic (probably does not possess an attractor). The limited time-span of the catalog and the analysis performed in this paper cannot rule out the emergence of an interesting, quasi-deterministic and low-dimensional structure in the case of major Vrancea earthquakes.Acknowledgement One of the authors (BE) is grateful to the Japanese Ministry of Education for providing him a Monbusho scholarship for studying in DPRI, Kyoto University. We thank Z.R. Struzik, M Holschneider, J. Mori and D. Kaplan for their useful comments, and acknowledge the support of the staff of DPRI, Kyoto University and the National Inst. for Earth Physics, Bucharest. We thank the two reviewers, M.B. Geilikman and M. Anghel, for their useful suggestions which improved the quality of this work.  相似文献   
4.
The aim of this paper is to describe a managing system for a unique Romanian database of historical seismograms and complementary documentation (metadata) and its dissemination and analysis procedure. For this study, 5188 historical seismograms recorded between 1903 and 1957 by the Romanian seismological observatories (Bucharest-Filaret, Foc?ani, Bac?u, Vrincioaia, Câmpulung-Muscel, Ia?i) were used. In order to reconsider the historical instrumental data, the analog seismograms are converted to digital images and digital waveforms (digitization/ vectorialisation). First, we applied a careful scanning procedure of the seismograms and related material (seismic bulletins, station books, etc.). In a next step, the high resolution scanned seismograms will be processed to obtain the digital/numeric waveforms. We used a Colortrac Smartlf Cx40 scanner which provides images in TIFF or JPG format. For digitization the algorithm Teseo2 developed by the National Institute of Geophysics and Volcanology in Rome (Italy), within the framework of the SISMOS Project, will be used.  相似文献   
5.
In the frame of the European Commission project “Seismic Hazard Harmonization in Europe” (SHARE), aiming at harmonizing seismic hazard at a European scale, the compilation of a homogeneous, European parametric earthquake catalogue was planned. The goal was to be achieved by considering the most updated historical dataset and assessing homogenous magnitudes, with support from several institutions. This paper describes the SHARE European Earthquake Catalogue (SHEEC), which covers the time window 1000–1899. It strongly relies on the experience of the European Commission project “Network of Research Infrastructures for European Seismology” (NERIES), a module of which was dedicated to create the European “Archive of Historical Earthquake Data” (AHEAD) and to establish methodologies to homogenously derive earthquake parameters from macroseismic data. AHEAD has supplied the final earthquake list, obtained after sorting duplications out and eliminating many fake events; in addition, it supplied the most updated historical dataset. Macroseismic data points (MDPs) provided by AHEAD have been processed with updated, repeatable procedures, regionally calibrated against a set of recent, instrumental earthquakes, to obtain earthquake parameters. From the same data, a set of epicentral intensity-to-magnitude relations has been derived, with the aim of providing another set of homogeneous Mw estimates. Then, a strategy focussed on maximizing the homogeneity of the final epicentral location and Mw, has been adopted. Special care has been devoted also to supply location and Mw uncertainty. The paper focuses on the procedure adopted for the compilation of SHEEC and briefly comments on the achieved results.  相似文献   
6.
We propose a finite difference method, using a hexagonal grid, to compute displacements (stresses, velocities, accelerations) in the near-field of a 2-D in-plane stress-drop crack, in both whole space (constant stress-drop) and half-space (depth-dependent stress-drop). To exercise the method, the stress field distribution is evaluated for both fundamental 2-D shear cracks, anti-plane. In order to test the method's reliability, the results are compared with some analytical and numerical solutions available in the literature (Kostrov, 1964;Virieux andMadariaga, 1982). For the in-plane source, the results emphasize that the method can resolve the stress concentration due to the rupture front from the stress peak associated with the shear wave propagating in front of the crack. Synthetic motions are computed on the fault, but also in an infinite medium and at the free surface. The rather complex waveforms generated in the near-field, even by simple sources, emphasize the contribution of all wave terms (near, intermediate and far-field) to the motion. The presence of near-field and the numerical procedure explain the significant low frequency content of the computed seismograms. The set of treated problems proves the method is stable and accurate.  相似文献   
7.
Vrancea major intermediate-depth earthquakes produced extreme damage in Bucharest city, located at about 165 km epicenter distance. Our purpose is to investigate the influence of local geological conditions upon the seismic motion in Bucharest in case of large (M>7) Vrancea earthquakes. Two input data sets are used: (a) geological, geotechnical and geophysical information, including in situ measurements, and (b) acceleration recordings of Vrancea earthquakes. Local response evaluation based on first dataset is confirmed by the spectral analysis of the earthquake records. Two main features are outlined: non-stationarity of ground motion dynamic amplification from one event to other and inadequacy of limiting the investigation depth to uppermost 30 m to evaluate ground dynamic characteristics. Consequently (1) we cannot extrapolate the ground motion response determined for moderate and small earthquakes to anticipate the effects of the large Vrancea shocks and (2) the local response is controlled by the entire package of Quaternary deposits which are significantly deeper than 30 m depth beneath Bucharest Area.  相似文献   
8.
9.
We present the regional ground-motion prediction equations for peak ground acceleration (PGA), peak ground velocity (PGV), pseudo-spectral acceleration (PSA), and seismic intensity (MSK scale) for the Vrancea intermediate depth earthquakes (SE-Carpathians) and territory of Romania. The prediction equations were constructed using the stochastic technique on the basis of the regional Fourier amplitude spectrum (FAS) source scaling and attenuation models and the generalised site amplification functions. Values of considered ground motion parameters are given as the functions of earthquake magnitude, depth and epicentral distance. The developed ground-motion models were tested and calibrated using the available data from the large Vrancea earthquakes. We suggest to use the presented equations for the rapid estimation of seismic effect after strong earthquakes (Shakemap generation) and seismic hazard assessment, both deterministic and probabilistic approaches.  相似文献   
10.
High-frequency records of nine low magnitude shallow earthquakes of the Vrancea (Romania) seismic region are inverted for the seismic moment tensor (MT). An approach is suggested regarding how to obtain at least a rough estimate of the MT when the information on the structure of the crust is poor. Here simple 1-D layered models are used in the Greens function synthesis despite the fact that the structure of the region is undoubtedly very complex. Different 1-D models were used for different source-station paths to approximate lateral variations. Record of a station located on a ray path which crosses a structure differing substantially from a 1-D model may however bias the retrieved MT essentially. Therefore, we did not collectively process all records, but subsets of stations separately. We check the consistency of the MTs resulting from these individual bootstrap solutions, and reject those which differ substantially, assuming that this is due to the oversimplification of the forward modeling. Thereafter, the averaged moment tensor yielded by the consistent subsets is accepted. Moreover, the distribution of the T, N and P axes from the moment tensors used for averaging provides a rough estimate of their reliability.Following this simplistic procedure, we found seven acceptably constrained solutions among nine events processed. Their P axes are compared with the general trend of the stress in the area: three comply with it, the others should be attributed to the complex stress field active in the region.Acknowledgment This research has been made possible by MURST (40% and 60%), by UNESCO-IGCP project 414 Realistic Modelling of Seismic Input for Megacities and Large Urban Areas and NATO SfP 972266. Partial support issued from the Grant Agency of Czech Rep. (Grant 205/02/0383) and from the National Agency for Science, Technology and Innovation of Romania (Grant 6185 GR/2000).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号