首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   2篇
  国内免费   1篇
大气科学   2篇
地球物理   5篇
地质学   6篇
海洋学   1篇
天文学   10篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2016年   3篇
  2015年   2篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  1997年   2篇
  1995年   1篇
  1992年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
Several physical and observational effects may contribute to the significant imbalances of magnetic flux that are often observed in active regions. We consider an effect not previously treated: the influence of electric currents in the photosphere. Electric currents can cause a line-of-sight flux imbalance because of the directionality of the magnetic field they produce. Currents associated with magnetic flux tubes produce larger imbalances than do smoothly-varying distributions of flux and current. We estimate the magnitude of this effect for current densities, total currents, and magnetic geometry consistent with observations. The expected imbalances lie approximately in the range 0–15%, depending on the character of the current-carrying fields and the angle from which they are viewed. Observationally, current-induced flux imbalances could be indicated by a statistical dependence of the imbalance on angular distance from disk center. A general study of magnetic flux balance in active regions is needed to determine the relative importance of other - probably larger -effects such as dilute flux (too weak to measure or rendered invisible by radiative transfer effects), merging with weak background fields, and long-range connections between active regions.Operated for the National Science Foundation by the Association of Universities for Research in Astronomy.  相似文献   
2.
Natural Hazards - Changes in climate, associated hazards, local adaptations in agriculture, and socioeconomic factors affecting adaptation were investigated using data from a large survey of 2310...  相似文献   
3.
An experiment was conducted in conjunction with the total solar eclipse on 29 March 2006 in Libya to measure both the electron temperature and its flow speed simultaneously at multiple locations in the low solar corona by measuring the visible K-coronal spectrum. Coronal model spectra incorporating the effects of electron temperature and its flow speed were matched with the measured K-coronal spectra to interpret the observations. Results show electron temperatures of (1.10±0.05) MK, (0.70±0.08) MK, and (0.98±0.12) MK, at 1.1 R from Sun center in the solar north, east and west, respectively, and (0.93±0.12) MK, at 1.2 R from Sun center in the solar west. The corresponding outflow speeds obtained from the spectral fit are (103±92) km s−1, (0+10) km s−1, (0+10) km s−1, and (0+10) km s−1. Since the observations were taken only at 1.1 R and 1.2 R from Sun center, these speeds, consistent with zero outflow, are in agreement with expectations and provide additional confirmation that the spectral fitting method is working. The electron temperature at 1.1 R from Sun center is larger at the north (polar region) than the east and west (equatorial region).  相似文献   
4.
5.
6.
We present Stokes I Zeeman splitting measurements of sunspots using the highly sensitive (g = 3) Fe i line at = 1.5649 m. The splittings are compared with simultaneous intensity measurements in the adjacent continuum. The relation between magnetic field strength and temperature has a characteristic, nonlinear shape in all the spots studied. In the umbra, there is an approximately linear relation between B 2 and T b, consistent with magnetohydrostatic equilibrium in a nearly vertical field. A distinct flattening of the B 2 vs T brelationship in the inner penumbra may be due to changes in the lateral pressure balance as the magnetic field becomes more horizontal; spatially unresolved intensity inhomogeneities may also influence the observed relation.Operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.  相似文献   
7.
Distributions of vertical electric current density (J z) calculated from vector measurements of the photospheric magnetic field are compared with ultraviolet spectroheliograms to investigate whether resistive heating is an important source of enhanced emission in the transition region. The photospheric magnetic fields in Active Region 2372 were measured on 6 and 7 April, 1980 with the MSFC vector magnetograph; ultraviolet wavelength spectroheliograms (L and Nv 1239 Å) were obtained with the UVSP experiment aboard the Solar Maximum Mission satellite. Spatial registration of the J z (5 arc sec resolution) and UV (3 arc sec resolution) maps indicates that the maximum current density is cospatial with a minor but persistent UV enhancement, but there is little detected current associated with other nearby bright areas. We conclude that although resistive heating may be important in the transition region, the currents responsible for the heating are largely unresolved in our measurements and have no simple correlation with the residual current measured on 5 arc sec scales.National Research Council Resident Research Associate.National Oceanic and Atmospheric Administration Space Environment Laboratory; currently at MSFC/SSL.  相似文献   
8.
We conducted an experiment in conjunction with the total solar eclipse of 29 March 2006 in Libya that measured the coronal intensity through two filters centered at 3850 Å and 4100 Å with bandwidths of ≈?40 Å. The purpose of these measurements was to obtain the intensity ratio through these two filters to determine the electron temperature. The instrument, Imaging Spectrograph of Coronal Electrons (ISCORE), consisted of an eight inch, f/10 Schmidt Cassegrain telescope with a thermoelectrically-cooled CCD camera at the focal plane. Results show electron temperatures of 105 K close to the limb to 3×106 K at 1.3R . We describe this novel technique, and we compare our results to other relevant measurements. This technique could be easily implemented on a space-based platform using a coronagraph to produce global maps of the electron temperature of the solar corona.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号