首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   2篇
  2019年   1篇
  1992年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Detailed field measurements were made of the degree of surface level change in a blowout, situated in the coastal dune area of Meijendel, The Netherlands. A formula was established to express the erosivity of the wind for the corresponding 34 measurement intervals, over a period of about 3 years. Having established, for 12 wind sectors, the relationship between wind velocity at the nearest standard weather station and at five locations in the blowout, correlations were derived between the deflation rate in the blowout and the wind erosivity using standard hourly wind data. The winter season, although the most windy, is by far the least effective season: the threshold shear wind velocity is disproportionally increased because the moisture content of the surface sand is high. The soil moisture conditions are described as a function of the daily precipitation and evaporation rate. The two most relevant upper and lower threshold shear wind velocities are determined empirically. During the summer season, deflation rate is even higher than indicated by the net surface level change because deflation is partly compensated by deposition of sand transported by rainwash from the blowout margin. With regard to spatial variation in the deflation rate within the blowout, it appears that locations with relatively high velocities coincide with higher deflation rates. However, the spatial variation is commonly less than is expected from the horizontal wind velocity distribution. In view of this the role of wind direction, blowout morphology and algal coverage of the soil in the deflation rate is discussed.  相似文献   
2.
Ocean Dynamics - Ebb-tidal deltas are shallow features seaward of tidal inlets, acting as a wave filter for the nearby barrier island and a source of sediment for the landward tidal basin. On many...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号