首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
地球物理   2篇
地质学   7篇
  2022年   1篇
  2018年   1篇
  2010年   1篇
  2002年   4篇
  1995年   1篇
  1994年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
The surface geology of central England and Belgium obscures a large ‘basement’ massif with a complex history and stronger crust and lithosphere than surrounding regions. The nucleus was forged by subduction-related magmatism at the Gondwana margin in Ediacaran time. Partitioning into a platform, in the English Midlands, and a basin stretching to Belgium, in the east, was already evident in Cambrian/earliest Ordovician time. The accretion of the Monian Composite Terrane during the Penobscotian deformation phase preceded late Tremadocian rifting, and Floian separation, of the Avalonia Terrane from the Gondwana margin. Late Ordovician magmatism in a belt from the Lake District to Belgium records subduction beneath Avalonia of part of the Tornquist Sea. This ‘Western Pacific-style’ oceanic basin closed in latest Ordovician time, uniting Avalonia and Baltica. Closure of the Iapetus Ocean in early Silurian time was soon followed by closure of the Rheic Ocean, recorded by subduction along the southern margin of the massif. The causes of late Caledonian deformation are poorly understood and controversial. Partitioned behaviour of the massif persisted into late Palaeozoic time. Late Devonian and Carboniferous sequences show strong onlap onto the massif, which was little affected by crustal extension. Compressional deformation during the Variscan Orogeny also appears slight, and was focussed in the west where a wedge-shaped mountain foreland uplift was driven by orogenic indentation, splitting the massif from the Welsh Massif along the reactivated Malvern Line. Permian to Mesozoic sequences exhibit persistent but variable degrees of onlap onto the massif.  相似文献   
2.
3.
4.
The extension of eastern Avalonia from Britain through the NE German Basin into Poland is, in some sense, a virtual structure. It is covered almost everywhere by late Paleozoic and younger sediments. Evidence for this terrane is only gathered from geophysical data and age information derived from magmatic rocks. During the last two decades, much geophysical and geological information has been gathered since the European Geotraverse (EGT), which was followed by the BABEL, LT-7, MONA LISA, DEKORP-Basin'96, and POLONAISE'97 deep seismic experiments. Based on seismic lines, a remarkable feature has been observed between the North Sea and Poland: north of the Elbe Line (EL), the lower crust is characterised by high velocities (6.8–7.0 km/s), a feature which seems to be characteristic for at least a major part of eastern Avalonia (far eastern Avalonia). In addition, the seismic lines indicate that a wedge of the East European Craton (EEC) (or Baltica) continues to the south below the southern Permian Basin (SPB)—a structure which resembles a passive continental margin. The observed pattern may either indicate an extension of the Baltic crust much farther south than earlier expected or oceanic crust of the Tornquist Sea trapped during the Caledonian collision. In either case, the data require a reinterpretation of the docking mechanism of eastern Avalonia, and the Elbe–Odra Line (EOL), as well as the Elbe Fault system, together with the Intra-Sudedic Faults, appear to be related to major changes in the deeper crustal structures separating the East European crust from the Paleozoic agglomeration of Middle European terranes.  相似文献   
5.
Bulletin of Earthquake Engineering - We present updated seismic hazard maps for the United Kingdom (UK) intended for use with the National Annex for the revised edition of Eurocode 8. The last...  相似文献   
6.
The Elbe Fault System (EFS) is a WNW-striking zone extending from the southeastern North Sea to southwestern Poland along the present southern margin of the North German Basin and the northern margin of the Sudetes Mountains. Although details are still under debate, geological and geophysical data reveal that upper crustal deformation along the Elbe Fault System has taken place repeatedly since Late Carboniferous times with changing kinematic activity in response to variation in the stress regime. In Late Carboniferous to early Permian times, the Elbe Fault System was part of a post-Variscan wrench fault system and acted as the southern boundary fault during the formation of the Permian Basins along the Trans-European Suture Zone (sensu [Geol. Mag. 134 (5) (1997) 585]). The Teisseyre–Tornquist Zone (TTZ) most probably provided the northern counterpart in a pull-apart scenario at that time. Further strain localisation took place during late Mesozoic transtension, when local shear within the Elbe Fault System caused subsidence and basin formation along and parallel to the fault system. The most intense deformation took place along the system during late Cretaceous–early Cenozoic time, when the Elbe Fault System responded to regional compression with up to 4 km of uplift and formation of internal flexural highs. Compressional deformation continued during early Cenozoic time and actually may be ongoing. The upper crust of the Elbe Fault System, which itself reacted in a more or less ductile fashion, is underlain by a lower crust characterised by low P-wave velocities, low densities and a weak rheology. Structural, seismic and gravimetric data as well as rheology models support the assumption that a weak, stress-sensitive zone in the lower crust is the reason for the high mobility of the area and repeated strain localisation along the Elbe Fault System.  相似文献   
7.
Magnetic anomaly maps of the Trans-European Suture Zone (TESZ) highlight the contrast between the highly magnetic crust of Baltica and the less magnetic terranes to the SW of the suture. Although the TESZ is imaged on gravity maps, anomalies related to postcollisional rifting and reactivated rift structures tend to dominate.

Seismic and potential field data have been used to construct 2 -D crustal models along three profiles crossing the Baltica–Avalonia suture in the southern North Sea (SNS). The first of these models lies along a transect assembled from reflection line GECO SNST 83-07 and refraction profile EUGENO-S 2; the other two models are coincident with MONA LISA profiles 1 and 2. Additional structural information and density information for the cover sequence is available from released wells, while magnetic susceptibility values are compatible with values measured from borehole core samples.

Magnetic anomalies related to the suture are interpreted as due to magnetic Baltican basement of the Ringkøbing-Fyn High dipping SW beneath nonmagnetic Avalonian basement underlying the western part of the SNS. Low-amplitude, long-wavelength magnetic anomalies occurring outboard of the suture are interpreted as due to a mid-crustal magnetic body, possibly a buried magmatic complex. This might represent the ‘missing’ arc related to inferred southward subduction of the Tornquist Sea, or an exotic element emplaced during the collision between Avalonia and Baltica. The present model supports an imbricated structure within Baltica as indicated by the latest reprocessing of the MONA LISA seismic data.  相似文献   

8.
The Trans-European Suture Zone (TESZ) is the most fundamental lithospheric boundary in Europe, separating the ancient crust of the Fennoscandian Shield–East European Craton from the younger crust of central Europe, and extending deep into the mantle. Geophysical potential field images provide an overview of the entire Palaeozoic orogenic system of northern and central Europe for the first time. The TESZ is largely concealed by sedimentary basins of Permian–Cenozoic age; geological observations are largely restricted to local basement highs and deep boreholes, and the coverage of deep seismic surveys is widely spaced, despite experiments recently acquired within the EUROPROBE programme. By contrast, the potential field data offer a relatively detailed coverage of standardised observations throughout the TESZ. While some features of the images may be sourced in the near surface, particularly in the gravity image, much of their content reflects the structure of the underlying Palaeozoic basement. At the scale presented, the images highlight the most fundamental features of the crustal structure of the TESZ. These include the strong contrast between the highly magnetic crust of the East European Craton and the less magnetic Palaeozoic-accreted terranes of central Europe; the lateral continuity of terranes and their internal structure, particularly where arc-magmatic complexes are involved; and the location and geometry of the terrane boundaries (oceanic sutures and strike-slip zones) that separate them.  相似文献   
9.
Summary Field mapping, analysis of borehole core and studies of geophysical potential field and seismic data can be used to demonstrate the existence of a number of distinct crustal blocks within Eastern Avalonia beneath eastern England and the southern North Sea. At the core of these blocks is the Midlands Microcraton which is flanked by Ordovician volcanic arc complexes exposed in Wales and the Lake District. A possible volcanic arc complex of comparable age in eastern England is concealed by late Palaeozoic and Mesozoic cover. These volcanic arc complexes resulted from subduction of oceanic lithosphere beneath Avalonia prior to collision with Baltica and Laurentia in late Ordovician and Silurian time, respectively. The nature of the crust north and east of the concealed Caledonides of Eastern England and south of the lapetus Suture/Tornquist Sea Suture, which forms the basement to the southern North Sea, is unclear. Late Ordovician metamorphic ages from cores penetrating deformed metasedimentary rocks on the Mid-North Sea High suggest these rocks were involved in Avalonia-Baltica collision before final closure of the lapetus Ocean between Laurentia and Avalonia.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号