首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   760篇
  免费   33篇
  国内免费   4篇
测绘学   18篇
大气科学   53篇
地球物理   141篇
地质学   332篇
海洋学   56篇
天文学   137篇
自然地理   60篇
  2024年   1篇
  2023年   6篇
  2021年   13篇
  2020年   13篇
  2019年   14篇
  2018年   31篇
  2017年   15篇
  2016年   30篇
  2015年   26篇
  2014年   31篇
  2013年   44篇
  2012年   39篇
  2011年   49篇
  2010年   47篇
  2009年   65篇
  2008年   50篇
  2007年   33篇
  2006年   33篇
  2005年   37篇
  2004年   36篇
  2003年   29篇
  2002年   37篇
  2001年   18篇
  2000年   15篇
  1999年   17篇
  1998年   16篇
  1997年   7篇
  1996年   4篇
  1995年   5篇
  1994年   6篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1986年   4篇
  1985年   3篇
  1984年   1篇
  1983年   4篇
  1981年   2篇
  1979年   2篇
  1975年   1篇
  1974年   1篇
  1966年   3篇
排序方式: 共有797条查询结果,搜索用时 31 毫秒
1.
QUEST on DASI is a ground-based, high-sensitivity, high-resolution (ℓmax2500) experiment designed to map CMB polarization at 100 and 150 GHz and to measure the power spectra from E-modes, B-modes from lensing of the CMB, and B-modes from primordial gravitational waves. The experiment comprises a 2.6 m Cassegrain optical system, equipped with an array of 62 polarization-sensitive bolometers (PSBs), located at the South Pole. The instrument is designed to minimize systematic effects; features include differencing of pairs of orthogonal PSBs within a single feed, a rotatable achromatic waveplate, and axisymmetric rotatable optics. In addition the South Pole location allows both repeatable and highly controlled observations. QUEST on DASI will commence operation in early 2005.  相似文献   
2.
Spectra of the central core and surrounding coma of Comet IRAS-Araki-Alcock (1983d) were obtained at 8–13 μm on 11 May and 2–4 μm on 12 May 1983. Spatially resolved measurements at 10 μm with a 4-arcsec beam showed that the central core was more than 100 times brighter than the inner coma only 8 arcsec away; for radially outflowing dust, the brightness ratio would be a factor of 8. The observations of the central core are consistent with direct detection of a nucleus having a radius of approximately 5 km. The temperature of the sunlit hemisphere was > 300 K. Spectra of the core are featureless, while spectra of the coma suggest weak silicate emission. The spectra show no evidence for icy grains. The dust producton rate on 11.4 May was ~ 105 g/sec, assuming that the gas flux from the dust-producing areas on the nucleus was ~ 10?5 g/cm2/sec.  相似文献   
3.
A coupling procedure between a climate model of intermediate complexity (CLIMBER-2.3) and a 3-dimensional thermo-mechanical ice-sheet model (GREMLINS) has been elaborated. The resulting coupled model describes the evolution of atmosphere, ocean, biosphere, cryosphere and their mutual interactions. It is used to perform several simulations of the Last Deglaciation period to identify the physical mechanisms at the origin of the deglaciation process. Our baseline experiment, forced by insolation and atmospheric CO2, produces almost complete deglaciation of past northern hemisphere continental ice sheets, although ice remains over the Cordilleran region at the end of the simulation and also in Alaska and Eastern Siberia. Results clearly demonstrate that, in this study, the melting of the North American ice sheet is critically dependent on the deglaciation of Fennoscandia through processes involving switches of the thermohaline circulation from a glacial mode to a modern one and associated warming of the northern hemisphere. A set of sensitivity experiments has been carried out to test the relative importance of both forcing factors and internal processes in the deglaciation mechanism. It appears that the deglaciation is primarily driven by insolation. However, the atmospheric CO2 modulates the timing of the melting of the Fennoscandian ice sheet, and results relative to Laurentide illustrate the existence of threshold CO2 values, that can be translated in terms of critical temperature, below which the deglaciation is impeded. Finally, we show that the beginning of the deglaciation process of the Laurentide ice sheet may be influenced by the time at which the shift of the thermohaline circulation from one mode to the other occurs.  相似文献   
4.
5.
6.
Carbon biogeochemistry of the Betsiboka estuary (north-western Madagascar)   总被引:1,自引:0,他引:1  
Madagascar’s largest estuary (Betsiboka) was sampled along the salinity gradient during the dry season to document the distribution and sources of particulate and dissolved organic carbon (POC, DOC) as well as dissolved inorganic carbon (DIC). The Betsiboka was characterized by a relatively high suspended matter load, and in line with this, low DOC/POC ratios (0.4–2.5). The partial pressure of CO2 (pCO2) was generally above atmospheric equilibrium (270–1530 ppm), but relatively low in comparison to other tropical and subtropical estuaries, resulting in low average CO2 emission to the atmosphere (9.1 ± 14.2 mmol m−2 d−1). Despite the fact that C4 vegetation is reported to cover >80% of the catchment area, stable isotope data on DOC and POC suggest that C4 derived material comprises only 30% of both pools in the freshwater zone, increasing to 60–70% and 50–60%, respectively, in the oligohaline zone due to additional lateral inputs. Sediments from intertidal mangroves in the estuary showed low organic carbon concentrations (<1%) and δ13C values (average −19.8‰) consistent with important inputs of riverine imported C4 material. This contribution was reflected in δ13C signatures of bacterial phospholipid derived fatty acids (i + a15:0), suggesting the potential importance of terrestrial organic matter sources for mineralization and secondary production in coastal ecosystems.  相似文献   
7.
We have developed a technique for the accurate and precise determination of 34S/32S isotope ratios (δ34S) in sulfur-bearing minerals using solution and laser ablation multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). We have examined and determined rigorous corrections for analytical difficulties such as instrumental mass bias, unresolved isobaric interferences, blanks, and laser ablation- and matrix-induced isotopic fractionation. Use of high resolution sector-field mass spectrometry removes major isobaric interferences from O2+. Standard-sample bracketing is used to correct for the instrumental mass bias of unknown samples. Background on sulfur masses arising from memory effects and residual oxygen-tailing are typically minor (< 0.2‰, within analytical error), and are mathematically removed by on-peak zero subtraction and by bracketing of samples with standards determined at the same signal intensity (within 20%). Matrix effects are significant (up to 0.7‰) for matrix compositions relevant to many natural sulfur-bearing minerals. For solution analysis, sulfur isotope compositions are best determined using purified (matrix-clean) sulfur standards and sample solutions using the chemical purification protocol we present. For in situ analysis, where the complex matrix cannot be removed prior to analysis, appropriately matrix-matching standards and samples removes matrix artifacts and yields sulfur isotope ratios consistent with conventional techniques using matrix-clean analytes. Our method enables solid samples to be calibrated against aqueous standards; a consideration that is important when certified, isotopically-homogeneous and appropriately matrix-matched solid standards do not exist. Further, bulk and in situ analyses can be performed interchangeably in a single analytical session because the instrumental setup is identical for both. We validated the robustness of our analytical method through multiple isotope analyses of a range of reference materials and have compared these with isotope ratios determined using independent techniques. Long-term reproducibility of S isotope compositions is typically 0.20‰ and 0.45‰ (2σ) for solution and laser analysis, respectively. Our method affords the opportunity to make accurate and relatively precise S isotope measurement for a wide range of sulfur-bearing materials, and is particularly appropriate for geologic samples with complex matrix and for which high-resolution in situ analysis is critical.  相似文献   
8.
A first application of geomorphological methods to the assessment of sandstone deterioration at Angkor is presented. Damage diagnosis was carried out on the first eastern tier of the central pyramid of the 1,000 year-old Ta Keo temple. Methods combine field observations and measurements at 230 sampling points, high-resolution lasergrammetry and stereophotogrammetry on a 2-m2 test zone, and SEM observations. The first results indicate that decay operates through a synergistic combination of weathering phenomena dominated by scaling and solution, and exhibits a high spatial variability. Percentages of deteriorated surfaces vary from 17.6 to 93.8%, and average stone recession values from 0.00 to 2.71 cm (minimum) and 0.34 to 5.49 cm (maximum). On the test-zone, stereophotogrammetry and 3D-mapping of the present and reconstructed initial states using lasergrammetry indicate that erosion scars up to 6 cm deep have formed since 1963. On the whole, the amount of deteriorated surfaces more than tripled between 1963 and 2008. The degree of implication of salts in stone decay remains unclear for most efflorescences are composed of calcite (CaCO3), with secondary importance of barite (BaSO4) and gypsum (CaSO4·2H2O). Future prospects aim to evaluate the impact on stone decay of the clearing out of the temple from the forest in the 1920s.  相似文献   
9.
Speleothem fluid inclusions are a potential paleo-precipitation proxy to reconstruct past rainwater isotopic composition (δ18O, δD). To get a better insight in the extraction of inclusion water from heated speleothem calcite, we monitored the water released from crushed and uncrushed speleothem calcite, heated to 900 °C at a rate of 300 °C/h, with a quadrupole mass spectrometer. Crushed calcite released water in three not well individualised peaks between 25 and 360 °C, 360 and 650 °C and between 650 and 800 °C while uncrushed calcite released water in two distinct temperature intervals: between 25 and 550 °C and between 550 and 900 °C.Water from two speleothems from the Han-sur-Lesse cave was recovered using three different techniques: i) the crushing and heating to 360 °C technique, ii) the decrepitation by heating to 550 °C and iii) the decomposition by heating to 900 °C technique. Measurements of the δD of water recovered by the decomposition of Han-sur-Lesse calcite heated to 900 °C did not show a 20 to 30‰ offset as found by previous authors. However a difference of 7‰ was observed between water released before and after decomposition of the calcite. Water recovery from the Han-sur-Lesse samples suggests that a simple heating technique (up to 550 °C) without crushing could both (a) recover water with δD representative of that of the drip water and (b) double the water yield as compared to the crushing and heating method.Our study warns for possible contamination of the recovered inclusion water with hydration water of lime, responsible for the recovery of water with very negative δD values.  相似文献   
10.
Dissolved Fe concentrations in subterranean estuaries, like their river-seawater counterparts, are strongly controlled by non-conservative behavior during mixing of groundwater and seawater in coastal aquifers. Previous studies at a subterranean estuary of Waquoit Bay on Cape Cod, USA demonstrate extensive precipitation of groundwater-borne dissolved ferrous iron and subsequent accumulation of iron oxides onto subsurface sands. Waquoit Bay is thus an excellent natural laboratory to assess the mechanisms of Fe-isotope fractionation in redox-stratified environments and determine potential Fe-isotope signatures of groundwater sources to coastal seawater. Here, we report Fe isotope compositions of iron-coated sands and porewaters beneath the intertidal zone of Waquoit Bay. The distribution of pore water Fe shows two distinct sources of Fe: one residing in the upward rising plume of Fe-rich groundwater and the second in the salt-wedge zone of pore water. The groundwater source has high Fe(II) concentration consistent with anoxic conditions and yield δ56Fe values between 0.3 and −1.3‰. In contrast, sediment porewaters occurring in the mixing zone of the subterranean estuary have very low δ56Fe values down to −5‰. These low δ56Fe values reflect Fe-redox cycling and result from the preferential retention of heavy Fe-isotopes onto newly formed Fe-oxyhydroxides. Analysis of Fe-oxides precipitated onto subsurface sands in two cores from the subterranean estuary revealed strong δ56Fe and Fe concentration gradients over less than 2m, yielding an overall range of δ56Fe values between −2 and 1.5‰. The relationship between Fe concentration and δ56Fe of Fe-rich sands can be modeled by the progressive precipitation of Fe-oxides along fluid flow through the subterranean estuary. These results demonstrate that large-scale Fe isotope fractionation (up to 5‰) can occur in subterranean estuaries, which could lead to coastal seawater characterized by very low δ56Fe values relative to river values.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号