首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   773篇
  免费   32篇
  国内免费   4篇
测绘学   45篇
大气科学   57篇
地球物理   158篇
地质学   258篇
海洋学   24篇
天文学   185篇
综合类   5篇
自然地理   77篇
  2023年   5篇
  2022年   5篇
  2021年   12篇
  2020年   13篇
  2019年   25篇
  2018年   25篇
  2017年   21篇
  2016年   29篇
  2015年   24篇
  2014年   28篇
  2013年   54篇
  2012年   39篇
  2011年   30篇
  2010年   31篇
  2009年   40篇
  2008年   31篇
  2007年   36篇
  2006年   26篇
  2005年   47篇
  2004年   27篇
  2003年   23篇
  2002年   27篇
  2001年   21篇
  2000年   20篇
  1999年   11篇
  1998年   6篇
  1997年   8篇
  1996年   8篇
  1995年   17篇
  1994年   5篇
  1993年   5篇
  1991年   3篇
  1990年   7篇
  1989年   5篇
  1988年   3篇
  1987年   7篇
  1986年   3篇
  1984年   7篇
  1982年   5篇
  1981年   3篇
  1980年   7篇
  1979年   8篇
  1978年   10篇
  1977年   5篇
  1975年   4篇
  1974年   3篇
  1973年   8篇
  1972年   5篇
  1971年   5篇
  1970年   3篇
排序方式: 共有809条查询结果,搜索用时 15 毫秒
1.
Abstract— Martian meteorites (MMs) have been launched from an estimated 5–9 sites on Mars within the last 20 Myr. Some 80–89% of these launch sites sampled igneous rock formations from only the last 29% of Martian time. We hypothesize that this imbalance arises not merely from poor statistics, but because the launch processes are dominated by two main phenomena: first, much of the older Martian surface is inefficient in launching rocks during impacts, and second, the volumetrically enormous reservoir of original cumulate crust enhances launch probability for 4.5 Gyr old rocks. There are four lines of evidence for the first point, not all of equal strength. First, impact theory implies that MM launch is favored by surface exposures of near‐surface coherent rock (≤102 m deep), whereas Noachian surfaces generally should have ≥102 m of loose or weakly cemented regolith with high ice content, reducing efficiency of rock launch. Second, similarly, both Mars Exploration Rovers found sedimentary strata, 1–2 orders of magnitude weaker than Martian igneous rocks, favoring low launch efficiency among some fluvial‐derived Hesperian and Noachian rocks. Even if launched, such rocks may be unrecognized as meteorites on Earth. Third, statistics of MM formation age versus cosmic‐ray exposure (CRE) age weakly suggest that older surfaces may need larger, deeper craters to launch rocks. Fourth, in direct confirmation, one of us (N. G. B.) has found that older surfaces need larger craters to produce secondary impact crater fields (cf. Barlow and Block 2004). In a survey of 200 craters, the smallest Noachian, Hesperian, and Amazonian craters with prominent fields of secondaries have diameters of ?45 km, ?19 km, and ?10 km, respectively. Because 40% of Mars is Noachian, and 74% is either Noachian or Hesperian, the subsurface geologic characteristics of the older areas probably affect statistics of recognized MMs and production rates of secondary crater populations, and the MM and secondary crater statistics may give us clues to those properties.  相似文献   
2.
Abstract— Amino acid analyses of the Antarctic CM2 chondrites Allan Hills (ALH) 83100 and Lewis Cliff (LEW) 90500 using liquid chromatography‐time of flight‐mass spectrometry (LC‐ToF‐MS) coupled with UV fluorescence detection revealed that these carbonaceous meteorites contain a suite of indigenous amino acids not present in Antarctic ice. Several amino acids were detected in ALH 83100, including glycine, alanine, β‐alanine, γ‐amino‐n‐butyric acid (γ‐ABA), and α‐aminoisobutyric acid (AIB) with concentrations ranging from 250 to 340 parts per billion (ppb). In contrast to ALH 83100, the CM2 meteorites LEW 90500 and Murchison had a much higher total abundance of these amino acids (440–3200 ppb). In addition, ALH 83100 was found to have lower abundances of the α‐dialkyl amino acids AIB and isovaline than LEW 90500 and Murchison. There are three possible explanations for the depleted amino acid content in ALH 83100: 1) amino acid leaching from ALH 83100 during exposure to Antarctic ice meltwater, 2) a higher degree of aqueous alteration on the ALH 83100 parent body, or 3) ALH 83100 originated on a chemically distinct parent body from the other two CM2 meteorites. The high relative abundance of ?‐amino‐n‐caproic acid (EACA) in the ALH 83100 meteorite as well as the Antarctic ice indicates that Nylon‐6 contamination from the Antarctic sample storage bags may have occurred during collection.  相似文献   
3.
4.
Abstract— This paper addresses several current issues related to use of craters in interpreting planetary surface histories. The primary goal is to test the widely adopted hypothesis of multiple populations of impactors at different times or places in the Solar System. New data presented here revise a “lunar highland” crater diameter distribution that has been widely used as evidence of an early distinct population of impactors. This curve, which has a depression of the size distribution at mid-sizes, does not, in fact, represent the lunar highlands generally. I show that it is associated with regions of intercrater plains. The more extensive the obliteration by intercrater plains, the deeper the depression. Modeling indicates that the depression of the curve is caused by the obliteration process itself. The oldest, most cratered regions of lunar highlands do not show the depression. These findings call into question earlier interpretations of multiple populations of impactors in the Solar System and of a distinctive primordial population. The present work is consistent, instead, with (1) a relatively uniform size distribution of interplanetary impactors, of mixed origins, back to 4 Ga ago and throughout the sampled Solar System; (2) fragmentation as the process that produced that size distribution; (3) saturation equilibrium on the most heavily cratered surfaces; and (4) differences in structure in the size distribution caused not by distinct impactor populations but by episodes of endogenic obliteration. If accepted, these results would modify some studies of solar system evolution, including assertions of two to five distinct populations of impactors, assumptions of lack of saturation equilibrium, and identifications of specific heliocentric or planetocentric sources for impactors within outer planet satellite systems.  相似文献   
5.
6.
Early (>3 Gy) wetter climate conditions on Mars have been proposed, and it is thus likely that pedogenic processes have occurred there at some point in the past. Soil and rock chemistry of the Martian landing sites were evaluated to test the hypothesis that in situ aqueous alteration and downward movement of solutes have been among the processes that have transformed these portions of the Mars regolith. A geochemical mass balance shows that Martian soils at three landing sites have lost significant quantities of major rock-forming elements and have gained elements that are likely present as soluble ions. The loss of elements is interpreted to have occurred during an earlier stage(s) of weathering that may have been accompanied by the downward transport of weathering products, and the salts are interpreted to be emplaced later in a drier Mars history. Chemical differences exist among the sites, indicating regional differences in soil composition. Shallow soil profile excavations at Gusev crater are consistent with late stage downward migration of salts, implying the presence of small amounts of liquid water even in relatively recent Martian history. While the mechanisms for chemical weathering and salt additions on Mars remain unclear, the soil chemistry appears to record a decline in leaching efficiency. A deep sedimentary exposure at Endurance crater contains complex depth profiles of SO4, Cl, and Br, trends generally consistent with downward aqueous transport accompanied by drying. While no model for the origin of Martian soils can be fully constrained with the currently available data, a pedogenic origin is consistent with observed Martian geology and geochemistry, and provides a testable hypothesis that can be evaluated with present and future data from the Mars surface.  相似文献   
7.
Methodology and use of tensor invariants for satellite gravity gradiometry   总被引:2,自引:1,他引:1  
Although its use is widespread in several other scientific disciplines, the theory of tensor invariants is only marginally adopted in gravity field modeling. We aim to close this gap by developing and applying the invariants approach for geopotential recovery. Gravitational tensor invariants are deduced from products of second-order derivatives of the gravitational potential. The benefit of the method presented arises from its independence of the gradiometer instrument’s orientation in space. Thus, we refrain from the classical methods for satellite gravity gradiometry analysis, i.e., in terms of individual gravity gradients, in favor of the alternative invariants approach. The invariants approach requires a tailored processing strategy. Firstly, the non-linear functionals with regard to the potential series expansion in spherical harmonics necessitates the linearization and iterative solution of the resulting least-squares problem. From the computational point of view, efficient linearization by means of perturbation theory has been adopted. It only requires the computation of reference gravity gradients. Secondly, the deduced pseudo-observations are composed of all the gravitational tensor elements, all of which require a comparable level of accuracy. Additionally, implementation of the invariants method for large data sets is a challenging task. We show the fundamentals of tensor invariants theory adapted to satellite gradiometry. With regard to the GOCE (Gravity field and steady-state Ocean Circulation Explorer) satellite gradiometry mission, we demonstrate that the iterative parameter estimation process converges within only two iterations. Additionally, for the GOCE configuration, we show the invariants approach to be insensitive to the synthesis of unobserved gravity gradients.  相似文献   
8.
We develop and apply an efficient strategy for Earth gravity field recovery from satellite gravity gradiometry data. Our approach is based upon the Paige-Saunders iterative least-squares method using QR decomposition (LSQR). We modify the original algorithm for space-geodetic applications: firstly, we investigate how convergence can be accelerated by means of both subspace and block-diagonal preconditioning. The efficiency of the latter dominates if the design matrix exhibits block-dominant structure. Secondly, we address Tikhonov-Phillips regularization in general. Thirdly, we demonstrate an effective implementation of the algorithm in a high-performance computing environment. In this context, an important issue is to avoid the twofold computation of the design matrix in each iteration. The computational platform is a 64-processor shared-memory supercomputer. The runtime results prove the successful parallelization of the LSQR solver. The numerical examples are chosen in view of the forthcoming satellite mission GOCE (Gravity field and steady-state Ocean Circulation Explorer). The closed-loop scenario covers 1 month of simulated data with 5 s sampling. We focus exclusively on the analysis of radial components of satellite accelerations and gravity gradients. Our extensions to the basic algorithm enable the method to be competitive with well-established inversion strategies in satellite geodesy, such as conjugate gradient methods or the brute-force approach. In its current development stage, the LSQR method appears ready to deal with real-data applications.  相似文献   
9.
Oliver K. Manuel 《Icarus》1980,41(2):312-315
Isotopically anomalous xenon in chondrites is closely associated with low-Z noble gases, but there is no helium (or neon) in the noble gas component with normal xenon. The correlation of elemental and isotopic heterogeneities in meteoritic noble gases places stringent limits on the origin of isotopically anomalous elements in meteorites and on the formation of the solar system.  相似文献   
10.
Spectrophotometric data show that major compositional groups among outer solar system (OSS) surfaces include bright ices and at least two distinct classes of blackish carbonaceous-like materials, called C-type and RD-type. VJHK colorimetry of asteroids, satellites, and laboratory samples shows that these three classes can be distinguished by VJHK colors. We define an “α index” that denotes the position of objects in VJHK color - color diagrams; it empirically increases with albedo and ice/dirt ratio. We use the above data to define color fields that may be useful in interpreting our observations of eight comets (1980–1981). All eight comets have colors generally resembling RD asteroids and are inconsistent with reflection off clean ice surfaces. The observations suggest that these comets' halos contain RD dirt or dirty ice grains colored by RD dirt, supporting J. Gradie and J. Veverka's [Nature283, 840–842 (1980)] prediction of RD, rather than C, material in comets. Remote Comet P/Schwassmann-Wachmann 1 was observed both during outburst and quiescence and had the highest α index of any observed comet. Comet α indices appear to be correlated with solar distance. Further work will be needed to clarify possible coloring effects due to particle size, dispersal, and composition. We suggest a number of physical interpretations based on a single two-component mixing model, which assumes that all OSS planetesimals formed primarily from bright ices and dark carboneceous-like dirt, consistent with condensation theory. We discuss differentiation processes that concentrated one component or the other at the surface. All measured OSS interplanetary bodies have surfaces of dark dirt or dark dirty ice colored by the dirt component. Comets, consistent with the Whipple dirty iceberg model, are such objects close enough to the Sun for volatilization to throw dirty ice grains into the coma. In remote comets, the ice component of the grains remains stable, and we see dirty ice grains; in near comets, the ice component vaporizes, and we see dirt grains. A volatile-depleted dusty regolith on P/Schwassmann-Wachmann 1 and other remote comets could explain their eruptive behavior by means of gas pressure buildup in the porous, weakly bonded dust.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号