首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   0篇
  国内免费   1篇
测绘学   1篇
大气科学   5篇
地球物理   19篇
地质学   6篇
天文学   60篇
综合类   1篇
自然地理   4篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   4篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2010年   7篇
  2009年   11篇
  2008年   3篇
  2007年   7篇
  2006年   7篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   8篇
  2001年   6篇
  2000年   6篇
  1999年   5篇
  1998年   4篇
  1994年   2篇
排序方式: 共有96条查询结果,搜索用时 0 毫秒
1.
2.
Parameters affecting maximum fluid transport in large aperture fractures   总被引:1,自引:0,他引:1  
We present results of laboratory experiments to study the behavior of liquids moving in unsaturated wide-aperture fractures. A 5-mm-thick glass plate cut with a 1.7-mm aperture was used as a fractured rock analog to study behavior of film and capillary droplet flow modes. Flow rates ranged between 0.6 and 6.0 ml/min. Variability in the ambient barometric pressure, resulting from weather conditions, seemed to play a role in the natural selection of flow mode. For droplet mode, constant input conditions resulted in highly variable transport properties within the fracture. The advancing meniscus exhibited a dynamic contact angle that was a function of the droplet speed and much larger than the static contact angle. Flow rate was reduced due to the larger contact angle. Analytical expressions for droplet velocity and flow capacity are presented as a function of the dynamic rather than the static contact angle.  相似文献   
3.
We apply the jet-powered ILOT scenario to two recently studied intermediate luminosity optical transients(ILOTs),and find the relevant shell mass and jets' energy that might account for the outbursts of these ILOTs.In the jet-powered ILOT scenario,an accretion disk around one of the stars of a binary system launches jets.The interaction of the jets with a previously ejected slow shell converts kinetic energy to thermal energy,part of which is radiated away.We apply two models of the jet-powered ILOT scenario.In the spherical shell model,the jets accelerate a spherical shell,while in the cocoon toy model the jets penetrate into the shell and inflate hot bubbles,the cocoons.We find consistent results.For the ILOT(ILRT:intermediate luminosity red transient) SNhunt120 we find the shell mass and jets' energy to be Ms■0.5-1 M_☉ and E_(2 j)■5×10~(47) erg,respectively.The jets' half opening angle is α_j■30°-60°.For the second peak of the ILOT(luminous red nova) AT 2014 ej we find these quantities to be M_s1-2 M_☉ and E_(2 j)1.5×10~(48) erg,with αj■20°-30°.The models cannot tell whether these ILOTs were powered by a stellar merger that leaves one star,or by mass transfer where both stars survived.In both cases the masses of the shells and energies of the jets suggest that the binary progenitor system was massive,with a combined mass of M_1+M_210 ■M_☉.  相似文献   
4.
5.
During the Near-Earth Asteroid Rendezvous (NEAR) spacecraft's investigation of asteroid 433 Eros, inflight calibration measurements from the multispectral imager (MSI) have provided refined knowledge of the camera's radiometric performance, pointing, and light-scattering characteristics. Measurements while at Eros corroborate most earlier calibration results, although there appears to be a small, gradual change in instrument dark current and flat field due to effects of aging in the space environment. The most pronounced change in instrument behavior, however, is a dramatic increase in scattered light due to contaminants accumulated on the optics during unscheduled fuel usage in December 1998. Procedures to accurately quantify and to remediate the scattered light are described in a companion paper (Li et al. 2002, Icarus155, 00-00). Acquisition of Eros measurements has clarified the relative, filter-to-filter, radiometric performance of the MSI. Absolute radiometric calibration appears very well constrained from flight measurements, with an accuracy of ∼5%. Pointing relative to the spacecraft coordinate system can be determined from the temperature of the spacecraft deck with an accuracy of ∼1 pixel.  相似文献   
6.
Data obtained by the near-infrared spectrometer carried by the NEAR-Shoemaker spacecraft show that the spectral properties of the asteroid Eros vary with temperature. The manner in which they vary demonstrates that the mineral olivine is a major constituent of the surface. The near-IR temperature-dependent spectral properties of Eros in the northern hemisphere, and for two individual regions on the surface, show clear evidence of the presence of the mineral olivine and are a close match to the temperature-spectral behavior of LL-type ordinary chondrite meteorites. While the presence of other olivine-rich meteorites cannot be excluded, H-type ordinary chondrites are clearly too pyroxene-rich to be permitted as a major surface component of Eros. The results of the thermal-spectral analysis are consistent with results from analysis of conventional reflectance spectra of the asteroid and contribute unambiguous detection of olivine to the understanding of the surface composition of Eros.  相似文献   
7.
We calculate the orbital evolution of binary systems where the primary star is an evolved red giant branch (RGB) star, while the secondary star is a low-mass main sequence (MS) star or a brown dwarf. The evolution starts with a tidal interaction that causes the secondary to spiral-in. Than either a common envelope (CE) is formed in a very short time, or alternatively the system reaches synchronization and the spiraling-in process substantially slows down. Some of the latter systems later enter a CE phase. We find that for a large range of system parameters, binary systems reach stable synchronized orbits before the onset of a CE phase. Such stable synchronized orbits allow the RGB star to lose mass prior to the onset of the CE phase. Even after the secondary enters the giant envelope, the rotational velocity is high enough to cause an enhanced mass-loss rate. Our results imply that it is crucial to include the pre-CE evolution when studying the outcome of the CE phase. We find that many more systems survive the CE phase than would be the case if these preceding spin-up and mass-loss phases had not been taken into account. Although we have made the calculations for RGB stars, the results have implications for other evolved stars that interact with close companions.  相似文献   
8.
I argue that the large-scale departure from axisymmetry of the η Carinae nebula can be explained by the binary star model of η Carinae. The companion diverts the wind blown by the primary star, by accreting from the wind and possibly by blowing its own collimated fast wind (CFW). The effect of these processes depends on the orbital separation, and hence on the orbital phase of the eccentric orbit. The variation of the mass outflow from the binary system with the orbital phase leads to a large-scale departure from axisymmetry along the equatorial plane, as is observed in η Carinae. I further speculate that such a companion may have accreted a large fraction of the mass that was expelled in the Great Eruption of 1850 and the Lesser Eruption of 1890. The accretion process was likely to form an accretion disc, with the formation of a CFW, or jets, on the two sides of the accretion disc. The CFW may have played a crucial role in the formation of the two lobes.  相似文献   
9.
We calculate the X-ray emission from both constant and time-evolving shocked fast winds blown by the central stars of planetary nebulae (PNe) and compare our calculations with observations. Using spherically symmetric numerical simulations with radiative cooling, we calculate the flow structure and the X-ray temperature and luminosity of the hot bubble formed by the shocked fast wind. We find that a constant fast wind gives results that are very close to those obtained from the self-similar solution. We show that in order for a fast shocked wind to explain the observed X-ray properties of PNe, rapid evolution of the wind is essential. More specifically, the mass-loss rate of the fast wind should be high early on when the speed is  ∼300–700 km s−1  , and then it needs to drop drastically by the time the PN age reaches ∼1000 yr. This implies that the central star has a very short pre-PN (post-asymptotic giant branch) phase.  相似文献   
10.
We argue that the asymmetric morphology of the blue and red shifted components of the outflow at hundreds of AU from the massive binary system η Carinae can be understood from the collision of the primary stellar wind with the slowly expanding dense equatorial gas. Recent high spatial observations of some forbidden lines, e.g. [Fe III] λ4659, reveal the outflowing gas within about one arcsecond (2300AU) from η Car. The distribution of the blue and red shifted components are not symmetric about the center, and they are quite different from each other. The morphologies of the blue and red shifted components correlate with the location of dense slowly moving equatorial gas (termed the Weigelt blob environment; WBE), that is thought to have been ejected during the 1887–1895 Lesser Eruption (LE). In our model the division to the blue and red shifted components is caused by the postshock flow of the primary wind on the two sides of the equatorial plane after it collides with the WBE. The fast wind from the secondary star plays no role in our model for these components, and it is the freely expanding primary wind that collides with the WBE. Because the line of sight is inclined to the binary axis, the two components are not symmetric. We show that the postshock gas can also account for the observed intensity in the [Fe III] λ4659 line.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号