首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
地球物理   3篇
地质学   8篇
  2021年   2篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2014年   1篇
  2009年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Hydrogeologically, faults may impede, conduit, exert no influence, or may play a combination of these roles on groundwater flow. The object of this paper is to study the hydrogeological role of the Tabarteh fault, which is located on the border of Zagros and Central Iran tectonic zones in an alluvial aquifer. The recorded data of water table levels, chemical parameters, and discharge rate of wells, in addition to geological maps and geophysical results, were collected and evaluated. The outcrop of travertine in limited areas and the emergence of a few small springs within the alluvium show a barrier role of the fault in the groundwater flow. The spatial analysis of chemical components, head time series, and groundwater flow direction assessment demonstrated that the fault acts as both a barrier and a non-barrier in different sections. The multivariate statistical methods of cluster and discriminant analyses also confirm the dual role of the fault.  相似文献   
2.
An accurate estimate of the groundwater inflow to a tunnel is one of the most challenging but essential tasks in tunnel design and construction. Most of the numerical or analytical solutions that have been developed ignore tunnel seepage conditions, material properties and hydraulic-head changes along the tunnel route during the excavation process, leading to inaccurate prediction of inflow rates. A method is introduced that uses MODFLOW code of GMS software to predict inflow rate as the tunnel boring machine (TBM) gradually advances. In this method, the tunnel boundary condition is conceptualized and defined using Drain package, which is simulated by dividing the drilling process into a series of successive intervals based on the tunnel excavation rates. In addition, the drain elevations are specified as the respective tunnel elevations, and the conductance parameters are assigned to intervals, depending on the TBM type and the tunnel seepage condition. The Qomroud water conveyance tunnel, located in Lorestan province of Iran, is 36 km in length. Since the Qomroud tunnel involved groundwater inrush during excavating, it is considered as a good case study to evaluate the presented method. The groundwater inflow to this tunnel during the TBM advance is simulated using the proposed method and the predicted rates are compared with observed rates. The results show that the presented method can satisfactorily predict the inflow rates as the TBM advances.  相似文献   
3.

Design of reinforced soil structures is greatly influenced by soil–geosynthetic interactions at interface which is normally assessed by costly and time consuming laboratory tests. In present research, using the results of large-scale direct shear tests conducted on soil–anchored geogrid samples a model for predicting Enhanced Interaction Coefficient (EIC) is proposed enabling researchers/engineers easily, quickly and at no cost to estimate soil–geosynthetic interactions. In this regard well and poorly graded sands, anchors of three different size and anchorage lengths from the shear surface together with normal pressures of 12.5, 25 and 50 kPa were used. Artificial Intelligence (AI) called the Gene Expression Programming (GEP) was adopted to develop the model. Input variables included coefficients of curvature and uniformity, normal pressure, effective grain size, anchor base and surface area, anchorage length and the output variable was EIC. Contributions of input variables were evaluated using sensitivity analysis. Excellent correlation between the GEP-based model and the experimental results were achieved showing that the proposed model is well capable of effectively estimating soil–anchored geogrid enhanced interaction coefficient. Sensitivity analysis for parameter importance shows that the most influential variables are normal pressure (σn) and anchorage length (L) and the least effective parameters are average particle size (D50) and anchor base area (Ab).

  相似文献   
4.
Stochastic Environmental Research and Risk Assessment - Land subsidence is a complicated hazard that artificial intelligence models can model it without approximation and simplification. In this...  相似文献   
5.
6.
Mohebbi Tafreshi  Ghazaleh  Nakhaei  Mohammad  Lak  Razyeh 《GeoJournal》2021,86(3):1203-1223
GeoJournal - The extent of the subsidence and the consequents damage to most of the residential and populated areas of Iran have made this phenomenon one of the most important natural hazards after...  相似文献   
7.
The present study investigates the hydrogeochemistry and contamination of Varamin deep aquifer located in the southeast of Tehran province, Iran. The study also evaluates groundwater suitability for irrigation uses. The hydrogeochemical study was conducted by collecting and analyzing 154 groundwater samples seasonally during 2014. Based on evolutionary sequence of Chebotarev, the aquifer is in the stage of SO4 + HCO3 in the north half of the plain and it has evolved into SO4 + Cl in the south half. The unusual increase in TDS and Cl? toward the western boundaries of the aquifer indicates some anomalies. These anomalies have originated from discharge of untreated wastewater of Tehran city in these areas. The studied aquifer contains four dominant groundwater types including Na–Ca–SO4 (55%), Na–Ca–HCO3 (22%), Na–Cl (13%) and Ca–Cl (10%). The spatial distributions of Na–Cl and Ca–Cl water types coincide with observed anomalies. Ionic relationships of SO4 2? versus Cl? and Na+ versus Cl? confirm that water–rock interaction and anthropogenic contribution are main sources of these ions in the groundwater. The main processes governing the chemistry of the groundwater are the dissolution of calcite, dolomite and gypsum along the flow path, and direct ion exchange. Reverse ion exchange controls the groundwater chemistry in the areas contaminated with untreated wastewater. Based on Na% and SAR, 10.3 and 27% of water samples are unsuitable for irrigation purposes, respectively. Regarding residual sodium carbonate, there is no treat for crop yields. Only 6% of water samples represent magnesium adsorption ratios more than 50% which are harmful and unsuitable for irrigation.  相似文献   
8.
Coastal aquifers are at threat of salinization in most parts of the world. This work investigated the seasonal hydrochemical evolution of coastal groundwater resources in Urmia plain, NW Iran. Two recently proposed methods have been used to comparison, recognize and understand the temporal and spatial evolution of saltwater intrusion in a coastal alluvial aquifer. The study takes into account that saltwater intrusion is a dynamic process, and that seasonal variations in the balance of the aquifer cause changes in groundwater chemistry. Pattern diagrams, which constitute the outcome of several hydrochemical processes, have traditionally been used to characterize vulnerability to sea/saltwater intrusion. However, the formats of such diagrams do not facilitate the geospatial analysis of groundwater quality, thus limiting the ability of spatio-temporal mapping and monitoring. This deficiency calls for methodologies which can translate information from some diagrams such Piper diagram into a format that can be mapped spatially. Distribution of groundwater chemistry types in Urmia plain based on modified Piper diagram using GQIPiper(mix) and GQIPiper(dom) indices that Mixed Ca–Mg–Cl and Ca-HCO3 are the dominant water types in the wet and dry seasons, respectively. In this study, a groundwater quality index specific to seawater intrusion (GQISWI) was used to check its efficiency for the groundwater samples affected by Urmia hypersaline Lake, Iran. Analysis of the main processes, by means of the Hydrochemical Facies Evolution Diagram (HFE-Diagram), provides essential knowledge about the main hydrochemical processes. Subsequently, analysis of the spatial distribution of hydrochemical facies using heatmaps helps to identify the general state of the aquifer with respect to saltwater intrusion during different sampling periods. The HFE-D results appear to be very successful for differentiating variations through time in the salinization processes caused by saltwater intrusion into the aquifer, distinguishing the phase of saltwater intrusion from the phase of recovery, and their respective evolutions. Both GQI and HFE-D methods show that hydrochemical variations can be read in terms of the pattern of saltwater intrusion and groundwater quality status. But generally, in this case (i.e. saltwater and not seawater intrusion) the HFE-D method was presented better efficiency than GQI method (including GQIPiper and GQISWI).  相似文献   
9.
Soil aquifer treatment (SAT) is an effective indirect technique for wastewater reuse. The present study aims at assessing the soil capacity in arid region of Varamin on natural attenuation of inorganic constituents of municipal treated wastewater of Tehran City. In order to simulate SAT pond, four columns of 30 cm in height and 4 cm in diameter were filled with sandy loam soil taken from artificial recharge pond in Varamin plain. These columns were recharged by secondary treated wastewater from Shahre-Rey treatment plant under the plan of 12-h wetting and drying cycles. During the experiment, 50 pore volume passed through each column. The pH, EC, TDS, SAL, SAR, major ions, nitrate, phosphate and trace elements were measured in influent and effluent samples. The concentration of Na+, Ca2+, Mg2+, Cl? and SO42? increased in effluent samples due to a washout process and dissolution of minerals. The soil could only attenuate NO3?, K+, Rb and PO43? with the percentage of 18.4, 24.6, 67.7 and 83.6, respectively. The soil of studied area is rich in Cr, Ni, Sr, Pb, Cu, Zn, Ba and Rb. The concentrations of all mentioned trace elements, with the exception of Rb, have increased in the effluent samples with respect to influent. Also, the quality indices of TDS, SAL and SAR have increased 10.6, 25.2 and 8.7%, respectively, in effluent. Soil column samples, at the end of experiment, contain high amounts of major and trace elements. Consequently, there is a potential risk for groundwater contamination in long-term recharge.  相似文献   
10.
In order to study the function, hydrodynamic behavior, and hydraulic properties of the karst aquifers in Izeh, southwest Iran, time series analysis was applied to the precipitation, spring discharge, and piezometric head data of two representative karst systems of Zagros (Ilam-Sarvak and Asmari Formations). Time series analysis was applied to two karst aquifers, those of Asmari and Ilam-Sarvak Formations. The daily precipitations of anticlines were estimated based on the precipitation–elevation function which was applied on digital elevation model (DEM) of the area. The mean estimated daily precipitations were considered in bivariate time series analysis as input data of each karst system. The total length of time series was about 2.7 years, extending from May 2007 to December 2009. During the research, several one-parameter probe data loggers were installed, which daily measure the water surfaces in karst aquifers. Time series analysis was applied for describing Izeh karst aquifers with a focus on both univariate (autocorrelation and spectral analysis) and bivariate (cross-correlation, gain function, and coherency function) methods. The results show that Asmari karst aquifer in Kamarderaz Anticline has a large storage capacity. Because of lacking a well-organized karst network, in the Asmari karst aquifer, baseflow dominates with low contribution of quick-flow. In the Ilam-Sarvak karst aquifer (Shavish and Tanush Anticlines), the karstification occurred in fractures and small diameter conduits, which caused to quick-flow between dense limestone. The Ilam-Sarvak karst aquifer could be regarded as a transition between two extreme types of karst, e.g., highly karstified system and in the opposite, extremely diffused one. The analysis of well hydrograph in Ilam-Sarvak karst aquifer shows that the karst aquifer has a low storage capacity. Unlike Asmari karst aquifer, the fractures and small diameter conduits in Ilam-Sarvak karst aquifer are more enhanced, producing a better developed karst network. Contrary to the typical karst systems, however, diffuse flow and conduit flow coexist in the Asmari Formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号