首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   1篇
地球物理   13篇
地质学   5篇
天文学   12篇
自然地理   9篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2006年   1篇
  2003年   1篇
  2000年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1990年   1篇
  1988年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1978年   3篇
  1977年   2篇
  1975年   2篇
  1974年   2篇
  1973年   4篇
  1972年   6篇
排序方式: 共有39条查询结果,搜索用时 31 毫秒
1.
The sedimentology of the Northwestern Sudan consists of lower, middle and upper cycles. The lower and upper cycles are composed of intercalated fluvial and shallow marine facies, whereas the middle cycle consists entirely of fluvial and glaciofluvial facies. The petrographic analysis shows that the lower and upper cydes consist of quartz and lithic arenite sandstones, whereas the middle cycle consists of arkosic and lithic arenite sandstones. The lower and upper cycle sandstones reflect derivation mainly from recycled orogens with minor contribution from craton interior provenances. However, the middle cycle sandstones indicate derivation from basement uplift, transitional and mainly recycled orogens provenances.  相似文献   
2.
Based on petrological and geochemical arguments, it is possible that arc magma is derived from subducted oceanic crust. In this paper, regional thermal models have been constructed to study the feasibility of melting cold subducted oceanic crusts at shallow depth (i.e. at depths of about 100 km) by a dynamic mantle. Calculated results suggest that plate subduction will generate an induced flow in the wedge above the subducting slab. This current continuously feeds hot mantle material into the corner and onto the slab surface. A high temperature thermal environment can be maintained in the vicinity of the wedge corner, immediately beneath the over-riding plate. Our regional models further demonstrate quantitatively that production of local melting is possible just about 30 km down dip from the asthenosphere wedge corner. Additional geological processes such as reasonable amounts of shear heating and minor dehydration (which will lower the local melting temperature) will further increase the probability of melting a cold subducted oceanic crust at shallow depth.  相似文献   
3.
Analysis of seismic signals from man-made impacts, moonquakes, and meteoroid impacts has established the presence of a lunar crust, approximately 60 km thick in the region of the Apollo seismic network; an underlying zone of nearly constant seismic velocity extending to a depth of about 1000 km, referred to as the mantle; and a lunar core, beginning at a depth of about 1000 km, in which shear waves are highly attenuated suggesting the presence of appreciable melting. Seismic velocitites in the crust reach 7 km s–1 beneath the lower-velocity surface zone. This velocity corresponds to that expected for the gabbroic anorthosites found to predominate in the highlands, suggesting that rock of this composition is the major constituent of the lunar crust. The upper mantle velocity of about 8 km s–1 for compressional waves corresponds to those of terrestrial olivines, pyroxenites and peridotites. The deep zone of melting may simply represent the depth at which solidus temperatures are exceeded in the lower mantle. If a silicate interior is assumed, as seems most plausible, minimum temperatures of between 1450°C and 1600°C at a depth of 1000 km are implied. The generation of deep moonquakes, which appear to be concentrated in a zone between 600 km and 1000 km deep, may now be explained as a consequence of the presence of fluids which facilitate dislocation. The preliminary estimate of meteoroid flux, based upon the statistics of seismic signals recorded from lunar impacts, is between one and three orders of magnitude lower than previous estimates from Earth-based measurements.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April, 1973.  相似文献   
4.
We have produced a P-wave model of the upper mantle beneath Southeast (SE) Asia from reprocessed short period International Seismological Centre (ISC) P and pP data, short period P data of the Annual Bulletin of Chinese Earthquakes (ABCE), and long period PP-P data. We used 3D sensitivity kernels to combine the datasets, and mantle structure was parameterized with an irregular grid. In the best-sampled region our data resolve structure on scale lengths less than 150 km. The smearing of crustal anomalies to larger depths is reduced by a crustal correction using an a priori 3D model. Our tomographic inversions reveal high-velocity roots beneath the Archean Ordos Plateau, the Sichuan Basin, and other continental blocks in SE Asia. Beneath the Himalayan Block we detect high seismic velocities, which we associate with subduction of Indian lithospheric mantle. This structure is visible above the 410 km discontinuity and may not connect to the remnant of the Neo-Tethys oceanic slab in the lower mantle. Our images suggest that only the southwestern part of the Tibetan plateau is underlain by Indian lithosphere and, thus, that the upper mantle beneath northeastern Tibet is primarily of Asian origin. Our imaging also reveals a large-scale high-velocity structure in the transition zone beneath the Yangtze Craton, which could have been produced in multiple subduction episodes. The low P-wave velocities beneath the Hainan Island are most prominent in the upper mantle and transition zone; they may represent counter flow from the surrounding subduction zones, and may not be unrelated to processes beneath eastern Tibet.  相似文献   
5.
Seismic scattering and shallow structure of the moon in oceanus procellarum   总被引:1,自引:0,他引:1  
Long, reverberating trains of seismic waves produced by impacts and moonquakes may be interpreted in terms of scattering in a surface layer overlying a non-scattering elastic medium. Model seismic experiments are used to qualitatively demonstrate the correctness of the interpretation. Three types of seismograms are found, near impact, far impact and moonquake. Only near impact and moonquake seismograms contain independent information. Details are given in the paper of the modelling of the scattering processes by the theory of diffusion.Interpretation of moonquake and artificial impact seismograms in two frequency bands from the Apollo 12 site indicates that the scattering layer is 25 km thick, with a Q of 5000. The mean distance between scatterers is approximately 5 km at 25 km depth and approximately 2 km at 14 km depth; the density of scatterers appears to be high near the surface, decreasing with depth. This may indicate that the scatterers are associated with cratering, or are cracks that anneal with depth. Most of the scattered energy is in the form of scattered surface waves.Communication presented at the Lunar Science Institute Conference on Geophysical and Geochemical Exploration of the Moon and Planets, January 10–12, 1973.  相似文献   
6.
Moonquakes and lunar tectonism   总被引:1,自引:0,他引:1  
With the succesful installation of a geophysical station at Hadley Rille, on July 31, 1971, on the Apollo 15 mission, and the continued operation of stations 12 and 14 approximately 1100 km SW, the Apollo program for the first time achieved a network of seismic stations on the lunar surface. A network of at least three stations is essential for the location of natural events on the Moon. Thus, the establishment of this network was one of the most important milestones in the geophysical exploration of the Moon. The major discoveries that have resulted to date from the analysis of seismic data from this network can be summarized as follows:
  1. Lunar seismic signals differ greatly from typical terrestrial seismic signals. It now appears that this can be explained almost entirely by the presence of a thin dry, heterogeneous layer which blankets the Moon to a probable depth of few km with a maximum possible depth of about 20 km. Seismic waves are highly scattered in this zone. Seismic wave propagation within the lunar interior, below the scattering zone, is highly efficient. As a result, it is probable that meteoroid impact signals are being received from the entire lunar surface.
  2. The Moon possesses a crust and a mantle, at least in the region of the Apollo 12 and 14 stations. The thickness of the crust is between 55 and 70 km and may consist of two layers. The contrast in elastic properties of the rocks which comprise these major structural units is at least as great as that which exists between the crust and mantle of the earth. (See Toks?zet al., p. 490, for further discussion of seismic evidence of a lunar crust.)
  3. Natural lunar events detected by the Apollo seismic network are moonquakes and meteoroid impacts. The average rate of release of seismic energy from moonquakes is far below that of the Earth. Although present data do not permit a completely unambiguous interpretation, the best solution obtainable places the most active moonquake focus at a depth of 800 km; slightly deeper than any known earthquake. These moonquakes occur in monthly cycles; triggered by lunar tides. There are at least 10 zones within which the repeating moonquakes originate.
  4. In addition to the repeating moonquakes, moonquake ‘swarms’ have been discovered. During periods of swarm activity, events may occur as frequently as one event every two hours over intervals lasting several days. The source of these swarms is unknown at present. The occurrence of moonquake swarms also appears to be related to lunar tides; although, it is too soon to be certain of this point.
These findings have been discussed in eight previous papers (Lathamet al., 1969, 1970, 1971) The instrument has been described by Lathamet al. (1969) and Sutton and Latham (1964). The locations of the seismic stations are shown in Figure 1.  相似文献   
7.
The thermal evolution of the Moon as it can be defined by the available data and theoretical calculations is discussed. A wide assortment of geological, geochemical and geophysical data constrain both the present-day temperatures and the thermal history of the lunar interior. On the basis of these data, the Moon is characterized as a differentiated body with a crust, a 1000-km-thick solid mantle (lithosphere) and an interior region (core) which may be partially molten. The presence of a crust indicates extensive melting and differentiation early in the lunar history. The ages of lunar samples define the chronology of igneous activity on the lunar surface. This covers a time span of about 1.5 billion yr, from the origin to about 3.16 billion yr ago. Most theoretical models require extensive melting early in the lunar history, and the outward differentiation of radioactive heat sources.Thermal history calculations, whether based on conductive or convective computation codes define relatively narrow bounds for the present day temperatures in the lunar mantle. In the inner region of the 700 km radius, the temperature limits are wider and are between about 100 and 1600°C at the center of the Moon. This central region could have a partially or totally molten core.The lunar heat flow values (about 30 ergs/cm2s) restrict the present day average uranium abundance to 60 ± 15 ppb (averaged for the whole Moon) with typical ratios of K/U = 2000 and Th/U = 3.5. This is consistent with an achondritic bulk composition for the Moon.The Moon, because of its smaller size, evolved rapidly as compared to the Earth and Mars. The lunar interior is cooling everywhere at the present and the Moon is tectonically inactive while Mars could be and the Earth is definitely active.  相似文献   
8.
A prototype expert system has been developed to provide rapid warning of earthquakes while they are occurring. Warning times of up to 100 seconds will be possible. In the complete system, several accelerometers are distributed at intervals within a few kilometers of a known fault; data are telemetered to a central computer which implements the expert system. The expert system incorporates specific information about the type of fault to be monitored, and includes simple rules for estimating the fault slip, rupture length, and seismic moment, all in real time. If the seismic moment exceeds a preset value, an alarm may be issued. The prototype is designed for deployment on near-surface strike-slip faults such as the San Andreas and has been successfully tested with data from the 1979 Imperial Valley and 1984 Morgan Hill earthquakes. Crucial concepts have also been tested using synthetic data calculated for a model of the 1857 Fort Tejon earthquake. Parkfield, California, could be used as a test site.  相似文献   
9.
The composition, structure and evolution of the moon's interior are narrowly constrained by a large assortment of physical and chemical data. Models of the thermal evolution of the moon that fit the chronology of igneous activity on the lunar surface, the stress history of the lunar lithosphere implied by the presence of mascons, and the surface concentrations of radioactive elements, involve extensive differentiation early in lunar history. This differentiation may be the result of rapid accretion and large-scale melting or of primary chemical layering during accretion; differences in present-day temperatures for these two possibilities are significant only in the inner 1000 km of the moon and may not be resolvable. If the Apollo 15 heat-flow result is representative of the moon, the average uranium concentration in the moon is 0.05–0.08 p.p.m.Density models for the moon, including the effects of temperature and pressure, can be made to satisfy the mass and moment of inertia of the moon and the presence of a low-density crust inferred from seismic refraction studies only if the lunar mantle is chemically or mineralogically inhomogeneous. The upper mantle must exceed the density of the lower mantle at similar conditions by at least 5%. The average mantle density is that of a pyroxenite or olivine pyroxenite, though the density of the upper mantle may exceed 3.5 g/cm3. The density of the lower mantle is less than that of the combined crust and upper mantle at similar temperature and pressure, thus reinforcing arguments for early moon-wide differentiation of both major and minor elements. The suggested density inversion is gravitationally unstable and implies stresses in the mantle 2–5 times those associated with the lunar gravitational field, a difficulty that can be explained or avoided by: (1) adopting lower values for the moment of inertia and/or crustal thickness, or (2) postulating that the strength of the lower mantle increases with depth or with time, either of which is possible for certain combinations of composition and thermal evolution.A small iron-rich core in the moon cannot be excluded by the moon's mass and moment of inertia. If such a core were molten at the time lunar surface rocks acquired remanent magnetization, then thermal-history models with initially cold interiors strongly depleted in radioactive heat sources as a primary accretional feature must be excluded. Further, the presence of ~||pre|40 K in a FeFeS core could significantly alter the thermal evolution and estimated present-day temperatures of the deep lunar interior.  相似文献   
10.
Mechanisms of the opening of back-arc systems are analyzed. Limited focal mechanisms of intraplate earthquakes are used to determine the stress regime of an overriding plate. Preliminary analyses show that compressive deviatoric stresses exist in the plate except near the spreading center. Based on this observation “trench suction” does not appear to be the primary force that drives back-arc spreading, since it will result in tensional deviatoric stresses within the overriding plate. Even though “continental pull” is able to satisfy the stress requirements, it does not appear to be a likely mechanism either because of the initiation and subsequent symmetric spreading difficulty associated with such a mechanism. The mechanism we favor is the one that involves the induced convective current in the mantle wedge immediately above the slab. Calculations show that the induced flow is able to generate sufficient stress to break up the overriding lithosphere if the tectonic stresses of the region are favorable. Both trench suction and continental pull may help to provide such a favorable tectonic stress regime.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号