首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   1篇
  国内免费   2篇
测绘学   9篇
大气科学   7篇
地球物理   15篇
地质学   47篇
天文学   8篇
综合类   8篇
自然地理   3篇
  2022年   2篇
  2021年   6篇
  2020年   3篇
  2019年   3篇
  2018年   7篇
  2017年   7篇
  2016年   5篇
  2015年   1篇
  2014年   8篇
  2013年   14篇
  2012年   5篇
  2011年   10篇
  2010年   3篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  2005年   3篇
  2003年   2篇
  2001年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
  1983年   1篇
排序方式: 共有97条查询结果,搜索用时 10 毫秒
1.
Sonrai basin, located along the southwestern margin of Bundelkhand Granite-Gneiss Complex (BGC) is known for its base metal and phosphorite mineralization. Uranium mineralization of appreciable grade and thickness was reported in Pisnari block in the northern part of this basin during sub-surface exploration activity in 1976-97. This was in the form of uranium-bitumin association within fractures in the carbonate-terrigenous sediments of Gorakalan shale, Rohini carbonate and Bandai sandstone of Sonrai Formation of Bijawar Group. Similar mineralization was also noted within the lower chloritic shale member of Solda Formation of the same Group. During subsequent drilling activity at a later phase (2005-09), uranium rich zones within Rohini carbonate and chloritic shale members were corroborated by the interception of mineralized bands in two boreholes drilled near Pisnari. Petrographic study of radioactive core samples reveal that uranium mineralization is closely associated with globular carbonaceous matter and sulphides along the fractures. Uranium is either adsorbed in carbonaceous matter or occurs as ultrafine inclusions of coffinite within carbonaceous matter. An additional phase of secondary uranium mineral (uranophane) is also noted in one of the boreholes. The uranium minerals, in association with sulphides, fill up moderately dipping fractures (approximately 15o towards North) which are oblique to the core axis of the inclined borehole and thus, the mineralization is characterized as hydrothermal fracture-controlled vein type mineralisation. C-HN- S analysis of carbonaceous matter occurring in close association with the uranium minerals reveal heterogeneity in composition with respect to carbon and sulfur. The present paper aims at discussing the geological, petrological and radiometric aspects of this mineralization, so as to enhance the understanding of the same.  相似文献   
2.
In the cool temperate region of South Korea, oxygen and hydrogen isotopes of groundwater, lake water, and precipitation were studied to determine the season of groundwater recharge. All the groundwater samples, irrespective of season, on δ18O–δ2H scale plotted along the summer precipitation, suggesting summer precipitation largely modulates recharge. The deuterium excess values of groundwater (d-excess) show clear seasonal difference, higher in winter (> 18‰) and lower in summer (< 10‰). And its resemblance to the summer precipitation d-excess value further suggests dominant role of summer precipitation in groundwater recharge. Based on the mass balance equation, with end-member d-excess values of seasonal precipitation and groundwater as input variables, groundwater is composed of 66% summer and 34% winter precipitation. Despite the study area being heavily forested, summer rainfall contribution higher than winter suggests that evapotranspiration effect is minimal in the region; may be due to thin sand–gravel-based porous soil overlying highly weathered granitic rock system.  相似文献   
3.
First time observations of spectral aerosol optical depths (AODs) at Mohal (31.9°N, 77.11°E; altitude 1154 m amsl) in the Kullu valley, located in the northwestern Indian Himalayan region, have been carried out during Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB), as a part of the Indian Space Research Organisation-Geosphere Biosphere Program (ISRO-GBP). AODs at six wavelengths are obtained using Microtops-II Sunphotometer and Ozonometer. The monthly mean values of AOD at 500 nm are found to be 0.27 ± 0.04 and 0.24 ± 0.02 during March and April, 2006 respectively. However, their monthly mean values are 0.33 ± 0.04 at 380 nm and 0.20 ± 0.03 nm at 870 nm during March 2006 and 0.31 ± 0.3 at 380 nm and 0.17 ± 0.2 at 870 nm during April 2006, showing a gradual decrease in AOD with wavelength. The Ångstrom wavelength exponent ‘α’ had a mean value of 0.72 ± 0.05, implying reduced dominance of fine particles. Further, the afternoon AOD values are higher as compared to forenoon values by ~ 33.0% during March and by ~ 9.0% during April 2006 and are attributed to the pollutant lifted up from the valley by the evolving boundary layer. Besides the long-range transportation of aerosol particles by airmass from the Great Sahara and the Thar Desert regions to the observing site, the high values of AODs have also been influenced by biomass burning and frequent incidents of forest fire at local levels.  相似文献   
4.
A landslide susceptibility zonation (LSZ) map helps to understand the spatial distribution of slope failure probability in an area and hence it is useful for effective landslide hazard mitigation measures. Such maps can be generated using qualitative or quantitative approaches. The present study is an attempt to utilise a multivariate statistical method called binary logistic regression (BLR) analysis for LSZ mapping in part of the Garhwal Lesser Himalaya, India, lying close to the Main Boundary Thrust (MBT). This method gives the freedom to use categorical and continuous predictor variables together in a regression analysis. Geographic Information System has been used for preparing the database on causal factors of slope instability and landslide locations as well as for carrying out the spatial modelling of landslide susceptibility. A forward stepwise logistic regression analysis using maximum likelihood estimation method has been used in the regression. The constant and the coefficients of the predictor variables retained by the regression model have been used to calculate the probability of slope failure for the entire study area. The predictive logistic regression model has been validated by receiver operating characteristic curve analysis, which has given 91.7% accuracy for the developed BLR model.  相似文献   
5.
The effects of uncertainty due to the variability of soil parameters on the risk of landsliding in the Himalayan region are investigated using a random field model combined with slope stability analyses. Effects of spatial variability both in horizontal and vertical directions, number of test samples, variations in piezometric level and the influence of earthquake on the reliability of a typical slope in a slide area are investigated. The results show that the reliability of slopes in the slide area is significantly affected by the coefficients of variation of soil parameters, spatial variations of soil parameters, number of test samples and piezometric variations. The results also show that the assumption of isotropic variations to assess slope reliability isconservative. The results of the study are useful in providing guidelines and pointing to remedial measures in the form of sub-surface drainage to improve slope reliability in the area.  相似文献   
6.
Understanding the isotopic composition of precipitation in a forested catchment is critical for ecohydrological studies. Changes in the water isotopes of rainfall were assessed during its passage through the canopy in throughfall, and the effect of different forest stands on the isotope composition of throughfall. In a cool temperate forest in Korea, rainfall and throughfall samples collected under Pinus densiflora (red pine), Castanea crenata (chestnut), Robinia pseudoacacia (black locust) and mixed stands (mix of these three species) were analysed for oxygen and hydrogen isotopes. Throughfall δ18O and δD were enriched compared to rainfall. A difference of δ18O and δD among throughfall may be related to the difference in interception–storage capacity of different species due to dissimilar canopy characteristics. Since isotopic composition of throughfall and rainfall are different due to canopy isotopic effects, use of rainfall isotopic signatures for ecohydrological studies in forested ecosystem can lead to biases.  相似文献   
7.
Exact solutions have been obtained for a massive fluid sphere under the extreme causality condition (dP/dρ)=1. Radial pulsational stability of these structures has been discussed. It is found that for pulsationally stable configurations the surface to central density ratio is greater than 0.30, the maximum values for surface and central redshifts are 0.85 and 3.40 respectively in the extreme case, and the maximum mass and size are respectively 4.8M and 20.1 km. It has also been shown that these structures are gravitationally bound, with a maximum binding energy per unit rest mass equal to 0.25 for a surface to central density ratio ?0.40. Slow rotation of these configurations has also been considered, and the relative drag and moment of inertia have been calculated. These results have been applied to the Crab pulsar and the mass of the pulsar has also been calculated based upon this model.  相似文献   
8.
This paper investigates surface elevation changes that occurred during 1996–2004 in the Jharia coalfield through the digital elevation model (DEM) generated using synthetic aperture radar interferometry (InSAR) using ERS-1/2 (European Remote Sensing Satellite) tandem and RADARSAT-1 data. The comparison of elevation values derived from the InSAR DEM and topographic height data shows a bias of 23.08 m with root-mean-square error of ±2.31 m (5.8 %). The accuracy of the DEM was investigated by comparing the elevation profiles with the digitized elevation contour data at four different locations. The profile comparison shows a mean bias of 22.68 m. Local topography shows changes in elevation up to ±40.00 m due to mining activities on the 8-year time period. The results of InSAR-derived heights and topographic heights were comparable and well-matched except at a few locations where topographic data were unavailable. DEM generated using InSAR due to its high spatial details is ideal for the detection and estimation of surface elevation changes in mining areas.  相似文献   
9.
The Bundelkhand massif comprising a variety of Archean-Paleoproterozoic granitoids along with low grade and high-grade metamorphites and located in the centre of the Indian Plate, underwent extension during Paleoproterozoic period, resulting in the formation of homotaxial intracratonic Bijawar and Sonrai basins in the south and Gwalior basin in the northern margin. The Bijawar and Sonrai basins are typified by their characteristic sediments and basic volcanic rocks. A feature common to both the basins, is the overwhelming occurrence of phosphatic rocks across stratigraphy and lithotype in the Bijawar basin and its confinement to the basal part of the sedimentary column in Sonrai basin. Most of these rocks are primarily of marine origin, and later subjected to periods of repeated phosphatic redistribution. Multiple episodes of such phosphatisation culminates in the proliferation and enrichment of phosphate in the upper Bijawar rocks of Bijawar basin (phosphatic breccia of Hirapur-Mardeora) and lower Bijawar rocks of Sonrai basin (phosphatic breccia of Lalitpur). Apart from these established phosphatic rocks in both the basins, quartz reefs occurring in the basement as well as the lower Bijawar Malhera Chert Breccia Formation in Bijawar basin at places are endowed with anomalously high phosphate content. The phosphatic component in all the lithotypes is in the form of apatite varying in form from microcrystalline to well formed coarser crystal aggregate comprising cement, veins and botroidal encrustations. Irrespective of its spatial, temporal and paragenetic position, it invariably registers weak to moderate radioactivity, due to the presence of uranium within it, as is evident from microprobe data. Although intra-grain and inter-grain distribution of uranium is found to be random and erratic, in general, it is observed that uranium tends to be enriched in the later generation phosphates, due to secondary process of dissolution and reprecipitation. The present paper, with fresh inputs from petrological, geochemical, minerochemical and isotope data pertaining to apatite from all these diverse units, not only explores the already established association of uranium and phosphate in these basins but also provides new insight to the phosphatic quartz reef within the basement and the phosphatised arenaceous sediments of the lower Bijawar Formation.  相似文献   
10.
The study intended to describe the alpine vegetation of a protected area of the northwestern Himalaya and identify the important environmental variables responsible for species distribution. We placed random plots covering different habitats and altitude to record species composition and environmental variables. Vegetation was classified using hierarchical cluster analysis and vegetation-environment relationships were evaluated with Canonical Correspondence Analysis. Four communities, each in alpine shrub and meadows were delineated and well justified in the ordination plots. Indicator species for the different communities were identified. Maximum species richness and diversity were found in community IV among shrub communities and community II among the meadows. Studied environmental variables explained 61.5% variation in shrub vegetation and 59.8% variation in meadows. Soil variables explained higher variability (∼35%) than spatial variables (∼21%) in both shrubs and meadows. Altitude, among the spatial variables and carbon/nitrogen ratio and nitrogen among the soil variables explained maximum variation. About 40% variations left unexplained. Latitude and species diversity among the other variables had significant correlation with ordination axes. Study showed that altitude and C/N ratio played a significant role in species composition. Extensive sampling efforts and inclusion of other non-studied variables are also suggested for better understanding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号