首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
地球物理   8篇
地质学   2篇
天文学   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2008年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
This paper reviews the results of investigations of melt inclusions in minerals of carbonatites and spatially associated silicate rocks genetically related to various deep-seated undersaturated silicate magmas of alkaline ultrabasic, alkaline basic, lamproitic, and kimberlitic compositions. The analysis of this direct genetic information showed that all the deep magmas are inherently enriched in volatile components, the most abundant among which are carbon dioxide, alkalis, halides, sulfur, and phosphorus. The volatiles probably initially served as agents of mantle metasomatism and promoted melting in deep magma sources. The derived magmas became enriched in carbon dioxide, alkalis, and other volatile components owing to the crystallization and fractionation of early high-magnesium minerals and gradually acquired the characteristics of carbonated silicate liquids. When critical compositional parameters were reached, the accumulated volatiles catalyzed immiscibility, the magmas became heterogeneous, and two-phase carbonate-silicate liquid immiscibility occurred at temperatures of ≥1280–1250°C. The immiscibility was accompanied by the partitioning of elements: the major portion of fluid components partitioned together with Ca into the carbonate-salt fraction (parental carbonatite melt), and the silicate melt was correspondingly depleted in these components and became more silicic. After spatial separation, the silicate and carbonate-silicate melts evolved independently during slow cooling. Differentiation and fractionation were characteristic of silicate melts. The carbonatite melts became again heterogeneous within the temperature range from 1200 to 800–600°C and separated into immiscible carbonate-salt fractions of various compositions: alkali-sulfate, alkali-phosphate, alkali-fluoride, alkali-chloride, and Fe-Mg-Ca carbonate. In large scale systems, polyphase silicate-carbonate-salt liquid immiscibility is usually manifested during the slow cooling and prolonged evolution of deeply derived melts in the Earth’s crust. It may lead to the formation of various types of intrusive carbonatites: widespread calcite-dolomite and rare alkali-sulfate, alkali-phosphate, and alkali-halide rocks. The initial alkaline carbonatite melts can retain their compositions enriched in P, S, Cl, and F only at rapid eruption followed by instantaneous quenching.  相似文献   
2.
Geomagnetism and Aeronomy - The temporal evolution of thermal bremsstrahlung in the sub-terahertz range is calculated for F-CHROMA models of the flare chromosphere and transition region (...  相似文献   
3.
A three-dimensional simulation of the microwave emission of nonthermal electrons within a flare magnetic loop that takes into account the influence of the chromosphere has been carried out. The paper investigates the possibility of the generation of a microwave spectrum (observed for some solar flares) with a maximum in the centimeter wavelength range and a positive slope in the millimeter one under the some distribution of the magnetic field strength and the parameters of the anisotropic nonthermal electrons along the loop. By the example of the event on July 5, 2012, it is shown that nonthermal electrons can be responsible not only for the centimeter bell-shaped emission spectrum generated in the coronal part of the loop but also for the increasing millimeter spectrum generated in the chromosphere.  相似文献   
4.

We compare the measured values of emission measure EM and temperature T of coronal flare plasma following the GOES, RHESSI, and SDO/AIA satellite observations for the events of July 4, 5, and 7, 2012, in the NOAA 11515 active region. We show that the values of EM and T can vary widely (up to one order of magnitude for EM) depending on the technical features of instruments and processing technique. The maximum difference has been found to be between RHESSI and SDO/AIA measurements for temperature and between GOES and SDO/AIA measurements for EM. We discuss the pros and cons of the approaches used and the practical effects of the resulting numerical estimates for EM and T.

  相似文献   
5.
6.
The investigation of rocks, minerals, and melt inclusions showed that porphyritic alkaline picrites and meimechites crystallized from different parental magmas. At a similar ultrabasic composition, the alkaline picrite melts were enriched in K2O relative to Na2O, and contained up to 0.12–0.13 wt % F and less Cr, Ni, and H2O (only 0.01–0.16 wt % H2O, versus 0.6–1.6 wt % in the meimechite melts) compared with the meimechite magmas. The crystallization of alkaline picrite melts occurred under stable conditions at relatively low temperatures without abrupt changes: olivine and clinopyroxene crystallized at 1340–1285 and 1230–1200°C, respectively, as compared with 1600–1450 and 1230–1200°C in the meimechites. The alkaline picrite melts evolved toward melanephelinite, nephelinite, tephrite, and trachydolerite; whereas the meimechite magmas gave rise to subalkaline picritic rocks. The partitioning of vanadium between olivine and melt suggests that the meimechite magma crystallized under more oxidizing conditions compared with the alkaline picrite melts: the KDV values for the meimechite melts (0.011–0.016) were three times lower than those for the alkaline picrite melts (0.045–0.052). The parental magmas of the alkaline picrites and meimechites were enriched in trace elements relative to mantle levels by factors of tens to hundreds. The alkaline picrite magma showed lower LILE and LREE contents compared with the meimechite magma. The magmas had also different indicator ratios of incompatible elements, including those immobile in aqueous fluids. It was concluded that the meimechite and alkaline picrite melts were derived from different mantle sources. The former were generated at lower degrees of melting of an undepleted mantle source, and the meimechite melts were produced by high-degree melting of a probably lherzolite-harzburgite source.  相似文献   
7.
Geomagnetism and Aeronomy - The study analyzes the millimeter emission of a solar flare on April 2, 2017, observed by the Bauman Moscow State Technical University telescope RT-7.5. Based on the...  相似文献   
8.

The thermal balance and hard X-ray emission of coronal loops for two solar events have been considered in the scope of a “standard” flare model. An important role of the thermal energy release is justified by the event of August 23, 2005, as an example. For the flare of November 9, 2013, it has been established that electrons accelerated at a flare loop top cannot maintain the observed hard X-ray fluxes from the flare footpoints, which indicates that charged particles are additionally accelerated in the chromosphere.

  相似文献   
9.
The 5 July 2012 solar flare SOL2012-07-05T11:44 (11:39?–?11:49 UT) with an increasing millimeter spectrum between 93 and 140 GHz is considered. We use space and ground-based observations in X-ray, extreme ultraviolet, microwave, and millimeter wave ranges obtained with the Reuven Ramaty High-Energy Solar Spectroscopic Imager, Solar Dynamics Observatory (SDO), Geostationary Operational Environmental Satellite, Radio Solar Telescope Network, and Bauman Moscow State Technical University millimeter radio telescope RT-7.5. The main parameters of thermal and accelerated electrons were determined through X-ray spectral fitting assuming the homogeneous thermal source and thick-target model. From the data of the Atmospheric Imaging Assembly/SDO and differential-emission-measure calculations it is shown that the thermal coronal plasma gives a negligible contribution to the millimeter flare emission. Model calculations suggest that the observed increase of millimeter spectral flux with frequency is determined by gyrosynchrotron emission of high-energy (\(\gtrsim 300\) keV) electrons in the chromosphere. The consequences of the results are discussed in the light of the flare-energy-release mechanisms.  相似文献   
10.
Geomagnetism and Aeronomy - Millimeter (93 and 140 GHz) emission of the М6.4 solar flare detected on April 2, 2017 in the NOAA 12644 active region by the RT-7.5 telescope of the Bauman Moscow...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号