首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   15篇
  国内免费   4篇
测绘学   20篇
大气科学   5篇
地球物理   39篇
地质学   86篇
海洋学   6篇
天文学   5篇
综合类   3篇
自然地理   10篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   5篇
  2019年   12篇
  2018年   17篇
  2017年   19篇
  2016年   20篇
  2015年   7篇
  2014年   13篇
  2013年   14篇
  2012年   8篇
  2011年   17篇
  2010年   9篇
  2009年   6篇
  2008年   1篇
  2007年   6篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1988年   2篇
  1973年   1篇
排序方式: 共有174条查询结果,搜索用时 15 毫秒
1.
2.
Palynological and geochemical analyses provide valuable information about modern and past climatic regimes and vegetation. The impact of climate and humans on past vegetation in the semi-arid areas of northwestern Iran has received increased interest in the wake of warming temperatures in the Middle East. Palynological and down-core XRF elemental abundances from a peat core from Lake Neor enabled a reconstruction of vegetational changes of the past 7000 years over the highlands of northwestern Iran. Periods of increased arboreal pollen (AP) types and high (Artemisia + Poaceae)/Chenopodiaceae ratios along with low titanium abundances, high percentages of total organic carbon, more negative δD values, and higher carbon accumulation rates suggest a relatively wet climate. These conditions have persisted during the periods 6700–6200, 5200–4450 and 3200–2200 cal a bp. The overall low AP values, substantial rise of Chenopodiaceae, high Ti abundances and low values of palaeo-redox proxies, are all evidences of a drier climate, as has been reconstructed for the periods 6200–5200 and 4030–3150 cal a bp and the last 2200 years. An important feature of the last centuries is the increase of anthropogenic and pastoral indicator pollen types. Our results may provide basic data to predict future trends in vegetation dynamics under future climate change in western Asia.  相似文献   
3.
We review studies of the Holocene and Late Pleistocene stratigraphy of eastern Iran to infer past changes in the environment within this presently arid region. We build a scenario of widespread, and presumably climatically driven, evolution of the landscape through the Holocene. Six sites, covering a 10° range in latitude, indicate a regional abandonment of alluvial fan surfaces at ~10 ± 3 ka, with the younger (~9 ka) end of this age range supported by several of the best-constrained studies. Incision of rivers into the fan surfaces has occurred in discrete stages in the early to mid-Holocene (~9–7 ka) leading to the formation of flights of river terraces. Detailed records of lakebed deposition in the presently arid interior of Iran are rare, though the available data indicate lake highstand conditions at <7.8 ka at South Golbaf in SE Iran and at < 8.7 ± 1.1 ka at the Nimbluk plain in NE Iran. The major periods of Holocene landscape development hence correlate with a period of time where water was more abundant than at present, with incision of rivers into thick alluvial deposits possibly occurring due to a combination of decreased sediment supply and high levels of precipitation, and with the formation of inset river terraces possibly responding to century-scale fluctuations in precipitation. No major geomorphic changes are identified within the later part of the Holocene, from which we infer that increased aridity has slowed evolution of the landscape. A decrease in precipitation in the mid-Holocene may have had a detrimental effect on bronze age societies in eastern Iran as has been inferred elsewhere in the eastern Mediterranean region. The pre-Holocene environmental changes in eastern Iran are less well constrained, though there are suggestions of alluvial fan abandonment at 40–60 ka, at ~80 ka, and at ~120 ka.  相似文献   
4.
A transversely isotropic multi‐layered half‐space, with axis of material symmetry perpendicular to the free surface, supports a flexible either annular or solid circle foundation. The contact area of the foundation and the half‐space is considered to be both frictionless and tensionless. The foundation is assumed to be affected by a vertical static axisymmetric load. Detailed analysis of the interaction of these two systems with different thickness of layers is the target of this paper. With the use of ring load Green's functions for both the foundation and the continuum half‐space, an integral equation accompanied with some inequalities is introduced to model the complex BVP. With the incorporation of ring‐shape FEM, we are capable of capturing both regular and singular solution smoothly. The validity of the combination of the analytical and numerical method is proved with comparing the results of this paper with a number of benchmark cases of both linear and nonlinear interaction of circular and annular foundation with half‐space. Some new illustrations are presented to portray the aspect of the anisotropy and layering of the half‐space. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
5.
6.
7.
8.
Human‐induced land use/land cover (LULC) changes are among the most important processes that shape the dynamics of the earth’s surface. This phenomenon, which is occurring at an astonishing rate, and its consequential environmental impacts have become an important area of research for scientists.Therefore, a wide range of methods and models have been developed to detect and predict these alterations, among which cellular automata (CA) models such as the CA‐Markov model, due to their affinity to geographic information system (GIS) and remote sensing (RS), are appropriate for detailed resolution modelling and simulating dynamic spatial processes. In Iran, the district of Ravansar has undergone severe LULC changes recently, thus to take the necessary precautions, decision‐makers need to predict and determine the extent of these changes. In this study, using spatial analysis methods the LULC changes in Ravansar were investigated from 1992 to 2015. Subsequently, the CA‐Markov model was applied to simulate the spatial pattern changes of LULC until 2030. Our results indicated that from 1992 to 2015, this region has witnessed a noticeable increase in the areas of the built‐up and agricultural lands (both aquatic and non‐aquatic), resulting in the decrease of the gardens, range, and bare lands. The simulated LULC map showed that this trend will continue due to more urbanization and development of agricultural areas.  相似文献   
9.
In watersheds that have not sufficient meteorological and hydrometric data for simulating rainfall-runoff events, using geomorphologic and geomorphoclimatic characteristics of watershed is a conventional method for the simulation. A number of rainfall-runoff models utilize these characteristics such as Nash-IUH, Clark-IUH, Geomorphologic Instantaneous Unit Hydrograph(GIUH), Geomorphoclimatic Instantaneous Unit Hydrograph(GcIUH), GIUH-based Nash(GIUH-Nash) and GcIUH-based Clark(GcIUH-Clark). But all these models are not appropriate for mountainous watersheds. Therefore, the objective of this study is to select the best of them for the simulation. The procedure of this study is: a) selecting appropriate rainfall-runoff events for calibration and validation of six hybrid models, b) distinguishing the best model based on different performance criteria(Percentage Error in Volume(PEV); Percentage Error in Peak(PEP); Percentage Error in Time to Peak(PETP); Root Mean Square Error(RMSE) and Nash-Sutcliffe model efficiency coefficient(ENS)), c) Sensitivity analysis for determination of the most effective parameter at each model, d) Uncertainty determination of different parameters in each model and confirmation of the obtained results by application of the performance criteria. For application of this procedure, the Navrood watershed in the north of Iran as a mountainous watershed has been considered. The results showed that the ClarkIUH and GcIUH-Clark are suitable models for simulation of flood hydrographs, while other models cannot simulate flood hydrographs appropriately. The sensitivity analysis shows that the most sensitive parameters are the infiltration constant rate and time of concentration in the Clark-IUH model. Also, the most sensitive parameters include the infiltration constant rate and storage coefficient in the GcIUHClark model. The Clark-IUH and GcIUH-Clark models are more sensitive to their parameters. The Latin Hypercube Sampling(LHS) on Monte Carlo(MC) simulation method was used for evaluation of uncertainty of data in rainfall-runoff models. In this method 500 sets of data values are produced and then the peak discharge of flood hydrographs for each produced data set is simulated with rainfall-runoff models. The uncertainty of data changes the value of simulated peak discharge of flood hydrograph. The uncertainty analysis shows that the observed peak discharges of different rainfall-runoff events are within the range of values of simulated by the six hybrid rainfall-runoff models and IUH that inputs of these models were the produced data sets. The range of the produced peak discharge of flood hydrographs by the Clark-IUH and GcIUH-Clark models is wider than those of other models.  相似文献   
10.
The aim of this study is to develop a two-dimensional hydrodynamic tidal model for the Persian Gulf (PG2017) using 2D-MIKE21 software. The advantages of present study is accounting for the spatial variation of bed friction coefficient besides a precise bathymetry together with a 23-year of combined records of satellite altimetry data. We found that the bed friction coefficient has a significant effect on sea level changes in the region under our modeling consideration. Since the tidal behavior in the northern part of the Qeshm Island is significantly different from the other parts of the Persian Gulf, to present a more accurate hydrodynamic tidal model, the Gulf is divided into two regions where the bed friction coefficient is modeled separately for each region. The root mean square value of the differences between the amplitude of dominant constituents; M2, S2, K1, and O1 derived from the PG2017 model and that of 98 altimetry and coastal tide gauge stations are respectively equal to 1.6, 1.9, 2.8, and 1.3?cm. Moreover, comparing the PG2017 model efficiency with the FES2014, OSU12, EOT11a, DTU10, and Admiralty models shows that the PG2017 model has an improvement of 22.1%, 47.2%, 43.2%, 44.2%, and 57.6% in terms of relative error, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号