首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   3篇
地球物理   4篇
地质学   1篇
  2021年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
A 54‐story steel, perimeter‐frame building in downtown Los Angeles, California, is identified by a wave method using records of the Northridge earthquake of 1994 (ML = 6.4, R = 32 km). The building is represented as a layered shear beam and a torsional shaft, characterized by the corresponding velocities of vertically propagating waves through the structure. The previously introduced waveform inversion algorithm is applied, which fits in the least squares sense pulses in low‐pass filtered impulse response functions computed at different stories. This paper demonstrates that layered shear beam and torsional shaft models are valid for this building, within bands that include the first five modes of vibration for each of the North–South (NS), East–West (EW), and torsional responses (0–1.7 Hz for NS and EW, and 0–3.5 Hz for the torsional response). The observed pulse travel time from ground floor to penthouse level is τ ≈1.5 s for NS and EW and τ ≈ 0.9 s for the torsional responses. The identified equivalent uniform shear beam wave velocities are βeq ≈ 140 m/s for NS and EW responses, and 260 m/s for torsion, and the apparent Q ≈ 25 for the NS and torsional, and ≈14 for the EW response. Across the layers, the wave velocity varied 90–170 m/s for the NS, 80–180 m/s for the EW, and 170–350 m/s for the torsional responses. The identification method is intended for use in structural health monitoring. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
2.
Groundwater is one of the major valuable water resources for the use of communities, agriculture, and industries. In the present study, we have developed three novel hybrid artificial intelligence (AI) models which is a combination of modified RealAdaBoost (MRAB), bagging (BA), and rotation forest (RF) ensembles with functional tree (FT) base classifier for the groundwater potential mapping (GPM) in the basaltic terrain at DakLak province, Highland Centre, Vietnam. Based on the literature survey, these proposed hybrid AI models are new and have not been used in the GPM of an area. Geospatial techniques were used and geo-hydrological data of 130 groundwater wells and 12 topographical and geo-environmental factors were used in the model studies. One-R Attribute Evaluation feature selection method was used for the selection of relevant input parameters for the development of AI models. The performance of these models was evaluated using various statistical measures including area under the receiver operation curve (AUC). Results indicated that though all the hybrid models developed in this study enhanced the goodness-of-fit and prediction accuracy, but MRAB-FT (AUC = 0.742) model outperformed RF-FT (AUC = 0.736), BA-FT (AUC = 0.714), and single FT (AUC = 0.674) models. Therefore, the MRAB-FT model can be considered as a promising AI hybrid technique for the accurate GPM. Accurate mapping of the groundwater potential zones will help in adequately recharging the aquifer for optimum use of groundwater resources by maintaining the balance between consumption and exploitation.  相似文献   
3.
Interferometric identification and health monitoring of high‐rise buildings has been gaining increasing interest in recent years. The wave dispersion in the structure has been largely ignored in these efforts but needs to be considered to further develop these methods. In this paper, (i) the goodness of estimation of vertical wave velocity in buildings, as function of frequency, by two nonparametric interferometric techniques is examined, using realistic fixed‐base Timoshenko beam benchmark models. Such models are convenient because the variation of phase and group velocities with frequency can be derived theoretically. The models are those of the NS and EW responses of Millikan Library. One of the techniques, deconvolution interferometry, estimates the phase velocity on a frequency band from phase difference between motions at two locations in the structure, while the other one estimates it approximately at the resonant frequencies based on standing wave patterns. The paper also (ii) examines the modeling error in wave velocity profiles identified by fitting layered shear beam in broader band impulse response functions of buildings with significant bending flexibility. This error may affect inferences on the spatial distribution of damage from detected changes in such velocity profiles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
4.
5.
Nonparametric techniques for estimation of wave dispersion in buildings by seismic interferometry are applied to a simple model of a soil–structure interaction (SSI) system with coupled horizontal and rocking response. The system consists of a viscously damped shear beam, representing a building, on a rigid foundation embedded in a half‐space. The analysis shows that (i) wave propagation through the system is dispersive. The dispersion is characterized by lower phase velocity (softening) in the band containing the fundamental system mode of vibration, and little change in the higher frequency bands, relative to the building shear wave velocity. This mirrors its well‐known effect on the frequencies of vibration, i.e. reduction for the fundamental mode and no significant change for the higher modes of vibration, in agreement with the duality of the wave and vibrational nature of structural response. Nevertheless, the phase velocity identified from broader band impulse response functions is very close to the superstructure shear wave velocity, as found by an earlier study of the same model. The analysis reveals that (ii) the reason for this apparent paradox is that the latter estimates are biased towards the higher values, representative of the higher frequencies in the band, where the response is less affected by SSI. It is also discussed that (iii) bending flexibility and soil flexibility produce similar effects on the phase velocities and frequencies of vibration of a building. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号