首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
地球物理   6篇
地质学   3篇
海洋学   1篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2003年   1篇
  2001年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Hydrophysical studies and mathematical modeling of ring structures during ice cover on Lake Baikal have shown that their existence at the stage of ice cover degradation is due to anticyclonic currents. Such currents can be generated as a result of local upwelling, which we associate with the rise of methane hydrates from the top layer of bottom sediments and their dissociation. Analysis of satellite images shows that the radii of ice rings range from 1300 to 2400 m, which is close to the baroclinic Rossby radius. The measured ice thicknesses in the area of the rings are in agreement with model calculations. Deep water renewal in Lake Baikal can also be associated with the rise of hydrates.  相似文献   
2.
For the first time, T,S-analysis was used to determine the specifics of seasonal variations in the vertical structure of Lake Baikal active layer. In the under-ice period, the active layer includes the under-ice, top winter, and upper intermediate water masses. The under-ice water mass, unlike other masses, shows an increase in mineralization to 100.74 mg/kg, which corresponds to a release of 71.1 g salt under 1 m2 of water surface in a layer 0–40 m in the process of salt freezing out during ice cover formation and accretion. In the phases of mixing (homothermy), the water masses of the active layer transform into a surface homogeneous mass. In summer and autumn, surface and upper intermediate water masses, separated by a water mass of summer thermocline can be identified. A specific feature of the summer thermocline water mass is the increased sum of ions because of an increase in HCO 3 - concentration at the decay of organic matter accumulating in the bottom part of the thermocline. The existence of the under-ice water mass and the water mass of summer thermocline was established in Lake Baikal for the first time. In the deep-water zone (>250 m), except for the bottom parts, the lower water masses (the lower intermediate and the deep) are permanent, their characteristics remaining stable during the year. The changes in the bottom water mass are due to the character of the processes of bottom water renewal.  相似文献   
3.
In the under-ice period, gas exchange between Baikal and the atmosphere is taking place through a system of coastal and perennial fractures and airholes in the ice, as well as through the surface of the ice-free part of the lake at the Angara source [24]. The total area of the open water never exceeds 0.03% of lake water area. The emission of CO2 in the course of ice sublimation over the entire period is ≤0.02 g CO2 from 1 m2. The transport of dissolved gases from under-ice water into the atmosphere is limited by molecular diffusion in microfractions of ice cover. The narrow daily variations of CO2 in the air in lake coastal zone is due to the effect of populated localities on its coast and large coniferous forests, which serve as diffuse sources of CO2, as well as diurnal variations of the direction and velocity of air mass transport by local winds.  相似文献   
4.
Mizandrontsev  I. B.  Kozlov  V. V.  Ivanov  V. G.  Kucher  K. M.  Korneva  E. S.  Granin  N. G. 《Water Resources》2020,47(1):122-129
Water Resources - Data on the vertical distribution of dissolved methane in Baikal water column are analyzed. The zone of open lake now shows an increase in the concentrations of dissolved methane...  相似文献   
5.
Methane bubble fluxes in gas flares from bottom sediments in Lake Baikal were estimated for the first time using hydroacoustic methods. Earlier work has demonstrated the occurrence of gas seeps both inside and outside of areas where bottom simulating reflectors were identified in seismic profiles. Fluxes ranged from 14 to 216 tons per year, with the flux for the entire area of the central and southern basins ranging from 1,400 to 2,800 tons per year. Comparison with other water bodies showed that fluxes from the most intensive Baikal flares were similar to those in the Norwegian and Okhotsk seas. Gas hydrates decompose at the lower boundary of the gas hydrate stability zone due to sedimentation. Calculation of the amount of methane produced due to sedimentation gave a total of between 2,600 and 14,000 tons per year for the central and southern basins of the lake. Based on rough estimation, the total flux from shallow- and deep-water gas seeps is similar to the amount of methane produced due to sedimentation. This suggests that gas hydrates possibly occupy much more than 10?% of the pore volume near the base of the gas hydrate stability zone, or that there are other reasons for gas hydrate dissociation and bubble flux from these bottom sediments.  相似文献   
6.
The oxygen cycle and the balance of free oxygen and oxygen bound in CO2in Lake Baikal are discussed based on new data on the gas exchange between the lake and atmosphere, O2consumption in bottom sediments, and the rate of aerobic decomposition in the abyssal zone of the lake.  相似文献   
7.
8.
The rate of aerobic oxidation of methane was calculated based on average profiles of the tritiumhelium age of the Baikal waters and concentrations of the dissolved methane in the water column. In the deep lake zone (>200 m), the intensity of oxidation vertically decreases and is (2–0.3) × 10?2 nl CH4l?1 days?1 in southern and central Baikal and (2.8–1.0) × 10?2 nl CH4 l?1 days?1 in northern Baikal. The effective coefficient of the oxidation rate in the lake depressions is 3.6 × 10?4, 3.3 × 10?4, and 3.7 × 10?4 days?1, respectively. At current methane concentrations in the water column, about 80 t of methane is oxidized per year. Oxidation of the dissolved methane in the water column was estimated at a possible increase of its concentration.  相似文献   
9.
Experimental data and a new model of ice buildup are used to assess and to study variations of heat flux at the water–ice interface. The latter plays an important part in ice cover formation but still is poorly known because of the lack of field temperature measurements with sufficient spatial and temporal resolution along the phase transition boundary, which knowledge gap is filled by this study.  相似文献   
10.
The diurnal course of gas exchange between Lake Baikal and the atmosphere during the summer warming up is calculated using the data of continuous 102-hour observations in August 2000 and the published materials of individual diurnal measurements of the dissolved gases concentrations made in different years. The diurnal course of the rate of gas exchange in both the coastal and open parts of the lake is found to be due to the fact that slow gas-exchange processes fail to compensate fast changes in the partial pressures of gases dissolved in the upper water layer. The changes are associated with the diurnal dynamics of the hydrometeorological conditions and the intensity of the production–destruction processes. It is found that under light winds, the contribution of biological factors to the formation of short-period variations in the CO2 and O2 fluxes through the lake water surface makes about 80% and that of abiotic factors, 20%. Considerable aperiodic changes in the diurnal course of hydrometeorological conditions are found to essentially distort the normal diurnal course of the gas-exchange processes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号