首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   5篇
地球物理   12篇
地质学   4篇
自然地理   2篇
  2022年   1篇
  2020年   2篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Deep well injection is widely used in South Florida, USA for wastewater disposal largely because of the presence of an injection zone (“boulder zone” of Floridan Aquifer System) that is capable of accepting very large quantities of fluids, in some wells over 75,000 m3/day. The greatest potential risk to public health associated with deep injection wells in South Florida is vertical migration of wastewater, containing pathogenic microorganisms and pollutants, into brackish-water aquifer zones that are being used for alternative water-supply projects such as aquifer storage and recovery. Upwards migration of municipal wastewater has occurred in a minority of South Florida injection systems. The results of solute-transport modeling using the SEAWAT program indicate that the measured vertical hydraulic conductivities of the rock matrix would allow for only minimal vertical migration. Fracturing at some sites increased the equivalent average vertical hydraulic conductivity of confining zone strata by approximately four orders of magnitude and allowed for vertical migration rates of up 80 m/year. Even where vertical migration was rapid, the documented transit times are likely long enough for the inactivation of pathogenic microorganisms.  相似文献   
2.
3.
An investigation of a sea water reverse osmosis desalination facility located in western Saudi Arabia has shown that aquifer treatment of the raw sea water provides a high degree of removal of natural organic matter (NOM) that causes membrane biofouling. The aquifer is a carbonate system that has a good hydraulic connection to the sea and 14 wells are used to induce sea water movement 400 to 450 m from the sea to the wells. During aquifer transport virtually all of the algae, over 90% of the bacteria, over 90% of the biopolymer fraction of NOM, and high percentages of the humic substance, building blocks, and some of the low molecular weight fractions of NOM are removed. Between 44 and over 90% of the transparent exopolymer particles (TEP) are removed with a corresponding significant reduction in concentration of the colloidal fraction of TEP. The removal rate for TEP appears to be greater in carbonate aquifers compared to siliciclastic systems. Although the production wells range in age from 4 months to 14 years, no significant difference in the degree of water treatment provided by the aquifer was found.  相似文献   
4.
Wadi alluvial aquifers located along coastal areas of the Middle East have been assumed to be suitable sources of feed water for seawater reverse osmosis facilities based on high productivity, connectedness to the sea for recharge, and the occurrence of seawater with chemistry similar to that in the adjacent Red Sea. An investigation of the intersection of Wadi Wasimi with the Red Sea in western Saudi Arabia has revealed that the associated predominantly unconfined alluvial aquifer divides into two sand-and-gravel aquifers at the coast, each with high productivity (transmissivity?=?42,000 m2/day). This aquifer system becomes confined near the coast and contains hypersaline water. The hydrogeology of Wadi Wasimi shows that two of the assumptions are incorrect in that the aquifer is not well connected to the sea because of confinement by very low hydraulic conductivity terrigenous and marine muds and the aquifer contains hypersaline water as a result of a hydraulic connection to a coastal sabkha. A supplemental study shows that the aquifer system contains a diverse microbial community composed of predominantly of Proteobacteria with accompanying high percentages of Gammaproteobacteria, Alphaproteobacteria and Deltaproteobacteria.  相似文献   
5.
Alternative water supply, storage, and treatment (AWSST) systems, which utilize aquifers to supply, store, and naturally treat water, are increasingly being implemented globally to address water scarcity and safety. The failure of some AWSST systems to meet water quality expectations was caused by conceptual model error, in which local hydrogeological conditions were less favorable than recognized or considered during project feasibility assessments, economic analyses, and design. More successful implementation of AWSST projects requires that conceptual model error be explicitly and rigorously addressed. Recommended approaches to addressing conceptual model uncertainty include more detailed aquifer characterization, recognition of a wide suite of possible alternative conceptual models, and then screening the models as to whether or not they are plausible and relevant in terms of materially impacting predictive results. Subjective professional judgement remains the basis for assigning probabilities to relevant conceptual models (contingencies).  相似文献   
6.
Fresh water resources within the Kingdom of Saudi Arabia are a rare and precious commodity that must be managed within a context of integrated water management. Wadi aquifers contain a high percentage of the naturally occurring fresh groundwater in the Kingdom. This resource is currently overused and has become depleted or contaminated at many locations. One resource that could be used to restore or enhance the fresh water resources within wadi aquifers is treated municipal waste water (reclaimed water). Each year about 80 percent of the country's treated municipal waste water is discharged to waste without any beneficial use. These discharges not only represent a lost water resource, but also create a number of adverse environmental impacts, such as damage to sensitive nearshore marine environments and creation of high-salinity interior surface water areas. An investigation of the hydrogeology of wadi aquifers in Saudi Arabia revealed that these aquifers can be used to develop aquifer recharge and recovery (ARR) systems that will be able to treat the impaired-quality water, store it until needed, and allow recovery of the water for transmittal to areas in demand. Full-engineered ARR systems can be designed at high capacities within wadi aquifer systems that can operate in concert with the natural role of wadis, while providing the required functions of additional treatment, storage and recovery of reclaimed water, while reducing the need to develop additional, energy-intensive desalination to meet new water supply demands.  相似文献   
7.
8.
Over 400 unlithified sediment samples were collected from four different depositional environments in global locations and the grain‐size distribution, porosity, and hydraulic conductivity were measured using standard methods. The measured hydraulic conductivity values were then compared to values calculated using 20 different empirical equations (e.g., Hazen, Carman‐Kozeny) commonly used to estimate hydraulic conductivity from grain‐size distribution. It was found that most of the hydraulic conductivity values estimated from the empirical equations correlated very poorly to the measured hydraulic conductivity values with errors ranging to over 500%. To improve the empirical estimation methodology, the samples were grouped by depositional environment and subdivided into subgroups based on lithology and mud percentage. The empirical methods were then analyzed to assess which methods best estimated the measured values. Modifications of the empirical equations, including changes to special coefficients and addition of offsets, were made to produce modified equations that considerably improve the hydraulic conductivity estimates from grain size data for beach, dune, offshore marine, and river sediments. Estimated hydraulic conductivity errors were reduced to 6 to 7.1 m/day for the beach subgroups, 3.4 to 7.1 m/day for dune subgroups, and 2.2 to 11 m/day for offshore sediments subgroups. Improvements were made for river environments, but still produced high errors between 13 and 23 m/day.  相似文献   
9.
Past geomorphological models assume that erosion of sediments from old mountain belts occurred at a relatively constant rate, based on comparatively uniform isostatic adjustment caused by unloading. Late Miocene strata of the south‐eastern United States provide an example of pulsed tectonism resulting in a surge in siliciclastic sediment production and transport. Regional tectonism (uplift of the southern Appalachian Mountains) and climatic conditions during the Late Miocene resulted in the long‐distance (up to 1000 km) fluvial transport of coarse siliciclastic sediments onto a stable carbonate platform in southern Florida. The sediments are unusual in that they are significantly coarser than marine‐transported sands in southern Florida, with discoidal quartz and quartzite clasts up to 40 mm in diameter locally present, and have relatively high potassium feldspar contents (up to 16% in some sample fractions), whereas feldspar is rare in modern Florida beach sands. It is suggested that previously documented rejuvenation of the southern Appalachian Mountains during the Middle to Late Miocene time, coupled with the Messenian sea‐level low, generated the increased rate of sediment production and necessary hydraulic gradient to allow rapid transport of coarse sediments. Tectonic influence on the river pathway in Florida, as well as in the southern Appalachian Mountains, may have maintained the river on the narrow carbonate platform. The Florida Platform during the Late Miocene must also have had a sufficiently wet climate to cause episodic transport of the coarse sediments. Siliciclastic sediment transport on the Florida Platform during the Late Miocene greatly differed from Pleistocene to modern conditions, which are dominated by the transport of fine‐grained sands by longshore marine processes.  相似文献   
10.
In situ chemical oxidation (ISCO) with activated persulfate is commonly used for the remediation of petroleum impacted soil and groundwater because of its proven efficiency and the perception that reaction end products are completely innocuous. While the reaction products are less hazardous compared to the contaminants being treated, they may inadvertently prolong site closure in areas that have adopted the U.S. Environmental Protection Agency (EPA) Secondary Maximum Contaminant Levels (SMCLs) as enforceable standards. This study examines the occurrence and persistence of iron, manganese, sulfate, sodium, and total dissolved solids (TDS) in groundwater following persulfate ISCO. The concentrations of these chemicals were observed remaining above their respective regulatory criteria almost 3 years following the chemical application. Background concentrations and mobilization due to the petroleum contamination and ISCO application are also evaluated. Baseline sampling revealed substantially higher iron and manganese concentrations inside the plume area compared to the upgradient and downgradient wells suggesting mobilization due to redox reactions occurring inside of the plume. Iron was not a component in the applied chemical formula, yet the iron concentration spiked by 366% in the key monitoring well during the first post-remediation monitoring event. Ionic interactions between the ISCO amendment and native soils are believed to be responsible for displacing significant quantities of iron from the soil. Sulfate, sodium, and TDS exceedances are primarily associated with decomposition products of the ISCO amendments. The iron, manganese, sulfate, sodium, and TDS concentrations are trending downward over time, but still exceed regulatory criteria or pre-ISCO concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号