首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
地球物理   6篇
地质学   6篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2013年   1篇
  2011年   3篇
  2010年   1篇
  2004年   2篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Deconvolution is an essential step for high-resolution imaging in seismic data processing. The frequency and phase of the seismic wavelet change through time during wave propagation as a consequence of seismic absorption. Therefore, wavelet estimation is the most vital step of deconvolution, which plays the main role in seismic processing and inversion. Gabor deconvolution is an effective method to eliminate attenuation effects. Since Gabor transform does not prepare the information about the phase, minimum-phase assumption is usually supposed to estimate the phase of the wavelet. This manner does not return the optimum response where the source wavelet would be dominantly a mixed phase. We used the kurtosis maximization algorithm to estimate the phase of the wavelet. First, we removed the attenuation effect in the Gabor domain and computed the amplitude spectrum of the source wavelet; then, we rotated the seismic trace with a constant phase to reach the maximum kurtosis. This procedure was repeated in moving windows to obtain the time-varying phase changes. After that, the propagating wavelet was generated to solve the inversion problem of the convolutional model. We showed that the assumption of minimum phase does not reflect a suitable response in the case of mixed-phase wavelets. Application of this algorithm on synthetic and real data shows that subtle reflectivity information could be recovered and vertical seismic resolution is significantly improved.  相似文献   
2.
Indoor navigation is important for various applications such as disaster management, building modeling, safety analysis etc. In the last decade, indoor environment has been a focus of wide research that includes development of indoor data acquisition techniques, 3D data modeling and indoor navigation. In this research, an automated method for 3D modeling of indoor navigation network has been presented. 3D indoor navigation modeling requires a valid 3D model that can be represented as a cell complex: a model without any gap or intersection such that two cells (e.g. room, corridor) perfectly touch each other. This research investigates an automated method for 3D modeling of indoor navigation network using a geometrical model of indoor building environment. In order to reduce time and cost of surveying process, Trimble LaserAce 1000 laser rangefinder was used to acquire indoor building data which led to the acquisition of an inaccurate geometry of building. The connection between surveying benchmarks was established using Delaunay triangulation. Dijkstra algorithm was used to find shortest path in between building floors. The modeling results were evaluated against an accurate geometry of indoor building environment which was acquired using highly-accurate Trimble M3 total station. This research intends to investigate and propose a novel method of topological navigation network modeling with a less accurate geometrical model to overcome the need of required an accurate geometrical model. To control the uncertainty of the calibration and of the reconstruction of the building from the measurements, interval analysis and homotopy continuation will be investigated in the near future.  相似文献   
3.
Reservoir topography has significant effects on mechanism of selective withdrawal. We study selective withdrawal of a linearly stratified fluid through a point sink in a long rectangular reservoir with a sill at the bed experimentally and analytically. Experiments were conducted for various flow rates and sill heights to evaluate their effects on withdrawal layer in the inertial-buoyancy regime. Transition to the steady state is discussed in terms of dynamics of shear waves over the sill. The results show that in presence of a sill the withdrawal layer is thicker and higher in elevation. For flows controlled at the sill crest, the withdrawal layer thickness in the point-sink flow is almost equal to that in the similar line-sink flow. We propose an analytical relation for the withdrawal layer thickness in presence of a sill and confirm it by experiments.  相似文献   
4.
Methods to derive the differential equation of the free surface boundary   总被引:2,自引:0,他引:2  
Wang XS  Neuman SP  Strack OD  Verruijt A  Jamali M  Seymour B  Bear J  Cheng AH 《Ground water》2011,49(2):133-42; discussion 142-3
  相似文献   
5.
Cracks in filter can develop as a result of earthquake deformations or post-construction settlement and in some cases cracks extended through both the core and filter. Hence, a test apparatus has been developed to investigate filter performance in the case of filter and core material cracking in the embankment dams. The apparatus allows testing of incomplete cylindrical test specimens of 10 cm diameter and height of 20 cm. If the filters work well and successfully, crack filling occur, also the flow rate decrease, and the head water pressure increase to the range of early pressure. In the failed filters case, the flow rate do not decrease and remain high, also a very low head water pressure take place. In this research, variations of pressure, fines contents of filter soils, compaction time, PI of the base material and amount of eroded materials was evaluated. Results showed that prime flow rate increased as hydraulic gradient increased, but decreased in a little time and reach to a stable value. Filter with 15% of non-plastic fine content, had ability to slump to fill the crack, but its coefficient of permeability decreased significantly, hence, cannot be used as a filter in embankment dams.  相似文献   
6.
This paper uses high-resolution images and field investigations, in conjunction with seismic reflection data, to constrain active structural deformation in the Kashan region of Central Iran. Offset stream beds and Qanats indicate right-lateral strike slip motion at a rate of about 2 mm/yr along the NW–SE trending Qom-Zefreh fault zone which has long been recognized as one of the major faults in Central Iran. However, the pattern of drainage systems across the active growing folds including deep incision of stream beds and deflected streams indicate uplift at depth on thrust faults dipping SW beneath the anticlines. Therefore, our studies in the Kashan region indicate that deformation occurs within Central Iran which is often considered to behave as a non-deforming block within the Arabia–Eurasia collision zone. The fact that the active Qom-Zefreh strike-slip fault runs parallel to the active folds, which overlie blind thrust faults, suggests that oblique motion of Arabia with respect to Eurasia is partitioned in this part of Central Iran.  相似文献   
7.
The propagation of seismic waves through a saturated reservoir compresses the fluid in the pore spaces. During this transition, parts of seismic energy would be attenuated because of intrinsic absorption. Rock physics models make the bridge between the seismic properties and petrophysical reality in the earth. Attenuation is one of the significant seismic attributes used to describe the fluid behaviour in the reservoirs. We examined the core samples using ultrasonic experiments at the reservoir conditions. Given the rock properties of the carbonate reservoir and experiment results, the patchy saturation mechanism was solved for substituted fluid using the theory of modulus frequency. The extracted relationship between the seismic attenuation and water saturation was used in time–frequency analysis. We performed the peak frequency method to estimate the Q factor in the Gabor domain and determined the water saturation based on the computed rock physics model. The results showed how the probable fault in the reservoir has stopped the fluid movement in the reservoir and caused touching the water‐bearing zone through drilling.  相似文献   
8.
Active fault zones of Armenia, SE Turkey and NW Iran present a diverse set of interrelated natural hazards. Three regional case studies in this cross-border zone are examined to show how earthquakes interact with other hazards to increase the risk of natural disaster. In northern Armenia, a combination of several natural and man-made phenomena (earthquakes, landslides and unstable dams with toxic wastes) along the Pambak-Sevan-Sunik fault (PSSF) zone lowers from 0.4 to 0.2–0.3g the maximum permissible level (MPL) of seismic hazard that may induce disastrous destruction and loss of life in the adjacent Vanadzor depression.

In the Ararat depression, a large active fault-bounded pull-apart basin at the junction of borders of Armenia, Turkey, Iran and Azerbaijan, an earthquake in 1840 was accompanied by an eruption of Ararat Volcano, lahars, landslides, floods, soil subsidence and liquefaction. The case study demonstrates that natural hazards that are secondary with respect to earthquakes may considerably increase the damage and the casualties and increase the risk associated with the seismic impact.

The North Tabriz–Gailatu fault system poses a high seismic hazard to the border areas of NW Iran, eastern Turkey, Nakhichevan (Azerbaijan) and southern Armenia. Right-lateral strike–slip motions along the North Tabriz fault have given rise to strong earthquakes, which threaten the city of Tabriz with its population of 1.2 million.

The examples illustrate how the concentration of natural hazards in active fault zones increases the risk associated with strong earthquakes in Armenia, eastern Turkey and NW Iran. This generally occurs across the junctions of international borders. Hence, the transboundary character of active faults requires transboundary cooperation in the study and mitigation of the natural risk.  相似文献   

9.
Active faults in the Zagros and central Iran   总被引:1,自引:0,他引:1  
Active tectonic movements in the northwestern Zagros include right lateral slip at the rate of about 10 mm/a along the Main Recent Fault, which inherits the position of the Main Thrust, now inactive, and active thrusting and accompanying folding distributed between several zones southwest of the Main Recent Fault. In the southeastern Zagros (the Fars Province), there are several right lateral faults that extend N–S obliquely to the overall trend of the Zagros fault-and-fold belt. These may be either branches of the Main Recent Fault, or faults accommodating relative broadening of the outer Zagros in its southeastern segment. The Main Thrust in the southeastern Zagros also remains inactive.

The Ipak, North Tehran, and Mosha fault zones and several minor structures in the eastern Alborz form the E–W-trending active fault system with combined reverse and left lateral slip. On the Ipak and Mosha zones, lateral movements with the late Quaternary mean rate exceeding 1 mm/a dominate over vertical fault movements. Together with right lateral faults stretching northeast of Zagros, the faults of the Alborz may accommodate east-directed motion of the Iranian microplate.  相似文献   

10.
There is growing pressure from regulators on operators to adhere to increasingly stricter regulations related to the environment and safety. Hence, operators are required to predict and contain risks related to hydrocarbon production and their infrastructure in order to maintain their licence to operate. A deeper understanding of production optimisation and production‐related risk requires strengthened knowledge of reservoir behaviour and overburden dynamics. To accomplish this, sufficient temporal and spatial resolution is required as well as an integration of various sources of measurements. At the same time, tremendous developments are taking place in sensors, networks, and data analysis technologies. Sensors and accompanying channels are getting smaller and cheaper, and yet they offer high fidelity. New ecosystems of ubiquitous wireless communications including Internet of Things nowadays allow anyone to affordably connect to the Internet at any time and anywhere. Recent advances in cloud storage and computing combined with data analytics allow fast and efficient solutions to handle considerable amounts of data. This paper is an effort to pave the way for exploiting these three fundamental advances to create Internet of Things‐based wireless networks of seismic sensors. To this aim, we propose to employ a recently developed Internet of Things‐based wireless technology, so‐called low‐power wide‐area networks, to exploit their long range, low power, and inherent compatibility to cloud storage and computing. We create a remotely operated minimum‐maintenance wireless solution for four major seismic applications of interest. By proposing appropriate network architecture and data coordination (aggregation and transmission) designs, we show that neither the low data rate nor the low duty cycle of low‐power wide‐area networks imposes fundamental issues in handling a considerable amount of data created by complex seismic scenarios as long as the application is delay tolerant. In order to confirm this claim, we cast our ideas into a practical large‐scale networking design for simultaneous seismic monitoring and interferometry and carry out an analysis on the data generation and transmission rates. Finally, we present some results from a small‐scale field test in which we have employed our Internet of Things‐based wireless nodes for real‐time seismic quality control over clouds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号