首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   1篇
大气科学   2篇
地球物理   5篇
地质学   2篇
自然地理   1篇
  2014年   1篇
  2013年   2篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
Daisuke  Sugawara  Koji  Minoura  Naoki  Nemoto  Shinji  Tsukawaki  Kazuhisa  Goto  Fumihiko  Imamura 《Island Arc》2009,18(3):513-525
Micropaleontological analysis of nearshore to offshore sediments recovered from the southwestern coast of Thailand was performed to clarify the submarine processes of sediment transport and deposition during the 2004 Indian Ocean tsunami. The distribution pattern of benthic foraminifers showed seaward migration after the tsunami event. Agglutinated foraminifers, which are characteristic of an intertidal brackish environment, were identified in the post-tsunami samples from foreshore to offshore zones. These suggest that sediments originally distributed in foreshore to nearshore zones were transported offshore due to the tsunami backwash. On the other hand, the distribution pattern of planktonic and benthic species living in offshore zones showed slight evidence of landward migration by the tsunami. This suggests that landward redistribution of sediments by the tsunami run-up did not occur in the offshore seafloor of the study area. Our results and a review of previous studies provide an interpretation of submarine sedimentation by tsunamis. It is possible that tsunami backwashes induce sediment flows that transport a large amount of coastal materials seaward. Thus, traces of paleotsunami backwashes can be identified in offshore sedimentary environments as the accumulation of allochthonous materials. This can be recognized as changes in benthic foraminiferal assemblages.  相似文献   
2.
Abstract A tsunamigenic sand layer is present in coastal sequences of the Masuda Plain, southwest Japan. The radiometric age of the layer has been estimated at 930 ± 80 years BP. It is proposed that the deposit is the product of a large historic tsunami believed to have occurred in the Japan Sea on 16 June 1026 AD.  相似文献   
3.
This study investigates the distribution of boulders at Miyara Bay of Ishigaki Island, Japan. These boulders were deposited on a reef flat extending approximately 400–1300 m in width. Most boulders were rectangular to ellipsoidal, without sharp broken edges. They are reef and coral rock fragments estimated as <335 m3 (<633 t). Locally in the bay, the relationship between the boulder weight and position shows that boulders of a given weight have a clear limit on seaward distribution on the reef flat. For example, more than 1, 10, and 100 tons of boulders were deposited, respectively, more than 500, 300, and 100 m from the reef edge. The line is consistent with the possible landward transport limit by maximum storm waves at the Ryukyu Islands, suggesting that the line was formed by the reworking of some boulders by maximally strong storm waves, although we can not exclude the possibility that the line was formed by tsunamis. Furthermore, 68% of boulders at the bay are deposited beyond this line. Therefore, the presence of these boulders at their present positions is difficult to explain solely by storm waves, implying the possible tsunami origin of these boulders. The boulders are characteristically concentrated along the high‐tide line, suggesting the drastic reduction of the tsunami hydraulic force along the line. Previous studies using radiocarbon age dating, as well as our study, imply that at least 69 boulders at Miyara Bay were probably deposited at their present positions by the 1771 Meiwa tsunami, although some of these boulders might have been emplaced and displaced on the reef flat by prior tsunami or storm surges.  相似文献   
4.
The concentrations of H+, nitrate (NO3 -), and sulfate (SO4 2-) in rainwater and their temporal changes were analyzed on the basis of continuous observation from 1 July 1991 to 30 June 1992 at a suburb of Nagoya, Japan. The yearly average for pH was 4.4. In general, an increasing pH with increase in precipitation amount was observed for rain events. Relatively high pH rainwater was sometimes observed at the beginning of rainfall, even though high concentrations of NO3 - and SO4 2- were involved. The high pH values were considered to be caused by the neutralization process with particulate matter containing cations. The yearly averaged ratio of equivalent concentration of nitrate to sulfate (N/S) in rainwater was 0.58. In the early stage of rain, the N/S value was usually more than 1.0 due to the difference of scavenging process between NO3 - and SO4 2-. High values of N/S ranging from 5 to 10 were found under the atmospheric conditions of calm winds and low humidity, during which it is possible that atmospheric particles float for a long time in the air before a rain event. The adsorption of NO3 - in the early stage of rainfall by particulate matter was suggested from the difference in scavenging processes of NO3 - and SO4 2-. A possible scavenging process, called limb cloud scavenging, is presented to explain the interaction of particles and nitrate ions at the early stage of rain. In limb cloud scavenging, the repeated migration of cloud particles or raindrops between the inside and outside of clouds increases the absorption of ions to a highly condensed level, thus increasing the N/S value of rainwater. The influence of global scale seasonal phenomena with large amounts of particulates, such as typhoons or Asian dust storms, was also studied.  相似文献   
5.
The moment magnitude (M w) 9.0 Tohoku-Oki Earthquake occurred on March 11, 2011, generating an unusually large tsunami. The seismic shocks and tsunami inundation severely damaged the Fukushima Daiichi Nuclear Power Plant. Radionuclide emission due to reactor breakdown contaminated wide areas of Fukushima and its surroundings. Heavy rainfall causes runoff across surface soil, and fine soil particles are susceptible to uptake by the flowing water. The high radioactivity of grains suspended in floodwater indicates that radioactive fallout was streamed into rivers in particulate form and transported downstream under high-flow conditions. Here, we investigated the diachronic mode of 134Cs and 137Cs in central Fukushima, through which the contaminated air mass drifted and caused wet deposition of radionuclides. Stratigraphic measurements of radioactivity in sediment cores is the method employed in this study to determine the basin-wide movement of 134Cs and 137Cs, to evaluate the significance of the erosion–transportation–accumulation processes on natural decontamination in terrain characterized by steep slopes and high precipitation. Stratigraphic results illustrate the process of fluvial sediment discharge, and the massive deposition of radiocaesium suggests basin-wide movement of fallout during concentrated rainfall. Grain suspension in torrential currents is an important pathway for transportation of radionuclides from land to sea, and the appearance of hotspots on floodplains and the offshore sea floor is the consequence of erosion and transportation under seasonal heavy precipitation. Radioactive horizons occur in offshore sediment columns and thus radiocaesium discharged from the estuary will persist forever under the sea floor if no artificial disturbance occurs.  相似文献   
6.
Construction and characterization of an atmospheric simulation smog chamber   总被引:11,自引:0,他引:11  
Currently, air pollution in Beijing has become a complex problem with two types of source pollutants: coal smoke and photochemical smog. Furthermore the maximum hourly mean concentration of O3 increases continuously, especially in the summer. In order to simulate the photochemical reaction, develop an air quality simulation model and further improve the air quality of Beijing, a precisely temperature-controlled, indoor, smog chamber facility was designed and constructed at Tsinghua University. Characterization experiments have been carried out to acquire the basic parameters of the smog chamber, such as the wall loss rates of NO2, NO, O3, C3H6 and particulate matter (PM), the intensity of ultraviolet (UV) light in the chamber, the reactivity of the purified air and the reproducibility of the experimental results. The results indicate that the facility performs up to specifications, and can meet the demands required for simulating the photochemical reaction. The effect of high primary contaminated PM on the formation of ozone and secondary organic aerosol (SOA) is under investigation.  相似文献   
7.
Geological evidence of severe tsunami inundation has been discovered in northern Japan. In the dune fields of Shimokita, in northernmost Tohoku, we have found two distinctive sand layers that are tsunami deposits. The run-up height of >20 m and inland inundation of at least 1.4 km are notably larger than any known historical case in Japan. The tsunami-genic earthquake that resulted in these deposits is thought to have taken place in the Kuril Forearc-Trench system nearly 700 years ago. The recurrence interval of major tsunamis originating in the Kuril subduction zone is about 400 years. Given that the most recent unusually large earthquake took place in AD 1611 (corresponding to the Keicho earthquake tsunami), the findings presented here increase the potential and hazard for an outsized tsunami striking the Pacific coast of northern Japan.  相似文献   
8.
Sedimentary cores BDP 96 and 98 and VER 96-2 St. 3 from Academician Ridge in Lake Baikal were investigated to investigate the effect of climatic fluctuations on rock weathering and clay formation in the Baikal drainage basin. Illite, smectite, vermiculite, and kaolinite were identified as the major clay minerals in the sediments by X-ray diffraction analysis. Biotite in gravels in alluvial soils of the Baikal drainage area weathers through illite to vermiculite, smectite, and finally to kaolinite. To investigate the relationship between weathering and climate, we measured the clay content and the concentration of biogenic silica in the sediments. High surface productivity (increased biogenic silica) and high chemical weathering (decreased clay content) occurred simultaneously, showing that crustal weathering and soil formation were enhanced under warm climatic conditions.Clay formation was enhanced in the watershed from the Late Miocene to the Middle Pliocene, and mechanical weathering of rocks increased during glacial intervals after the climate began to cool in Late Pliocene time. This change in the weathering mode in the watershed reduced the nutrient flux and aquatic productivity of Lake Baikal.  相似文献   
9.
Crustal structure and origin of the northeast Japan arc   总被引:1,自引:0,他引:1  
Abstract Northeast Japan is a typical island arc region and its topographic arrangement reflects the geophysical characteristics of the island arc system. However, the structural style of the arc is very complicated and varied due to the repeated superposing of faults and folds on to earlier structures.
Geotectonic events that involved creation of the fundamental framework of the island arc crust occurred in east Asia in the Late Jurassic to Early Cretaceous and were probably induced by accretion and collision tectonics. The fragmentation and subsequent displacement of the crust took place during the Early Neogene in response to the terrane collision and the change in oceanic plate motion, leading to the opening of the Japan Sea. Huge amounts of volcano-sedimentary rocks buried the tilted fault blocks of pre-Tertiary basement with the development of the island arc.  相似文献   
10.
A post-tsunami field survey following the 2011 Tohoku-oki Earthquake Tsunami was carried out to asses inundated area in Sendai Plain, Northeast Japan. The type of inundation was classified into two categories (major and minor) according to the amount of accumulated debris, garbage and sediment. Major and minor inundations were identified up to 4 and 5 km from the coastline, respectively. Many artificial geomorphological features, such as roadway embankments and canals, were believed to have affected the run-up process of the tsunami. The inundation area of the 2011 tsunami on the Sendai Plain is compared with that of the 869 Jogan tsunami, which was reconstructed using numerical modeling based on available historical and geological records. The inundation area of the 2011 Tohoku-oki tsunami is comparable to that of the 869 Jogan tsunami, although a direct comparison is difficult due to differences in geomorphological contexts between the paleo period and the present.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号