首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281篇
  免费   23篇
  国内免费   9篇
测绘学   14篇
大气科学   12篇
地球物理   115篇
地质学   134篇
海洋学   17篇
天文学   8篇
综合类   3篇
自然地理   10篇
  2024年   1篇
  2023年   1篇
  2022年   8篇
  2021年   14篇
  2020年   19篇
  2019年   15篇
  2018年   36篇
  2017年   26篇
  2016年   31篇
  2015年   14篇
  2014年   25篇
  2013年   24篇
  2012年   21篇
  2011年   27篇
  2010年   15篇
  2009年   11篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1995年   1篇
  1990年   1篇
  1989年   1篇
  1984年   2篇
  1979年   1篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有313条查询结果,搜索用时 109 毫秒
1.
A possible effective stress variable for wet granular materials is numerically investigated based on an adapted discrete element method (DEM) model for an ideal three‐phase system. The DEM simulations consider granular materials made of nearly monodisperse spherical particles, in the pendular regime with the pore fluid mixture consisting of distinct water menisci bridging particle pairs. The contact force‐related stress contribution to the total stresses is isolated and tested as the effective stress candidate for dense or loose systems. It is first recalled that this contact stress tensor is indeed an adequate effective stress that describes stress limit states of wet samples with the same Mohr‐Coulomb criterion associated with their dry counterparts. As for constitutive relationships, it is demonstrated that the contact stress tensor used in conjunction with dry constitutive relations does describe the strains of wet samples during an initial strain regime but not beyond. Outside this so‐called quasi‐static strain regime, whose extent is much greater for dense than loose materials, dramatic changes in the contact network prevent macroscale contact stress‐strain relationships to apply in the same manner to dry and unsaturated conditions. The presented numerical results also reveal unexpected constitutive bifurcations for the loose material, related to stick‐slip macrobehavior.  相似文献   
2.
Mooring optimization of floating platforms using a genetic algorithm   总被引:1,自引:0,他引:1  
This paper presents a new procedure for the optimization of the mooring design of floating platforms, in which an automatic design sequence is also established. Regarding the optimization philosophy, the following aspects are dealt with:
• The optimization of the platform heading and its mooring pattern, taking into account the environmental force spreading;
• optimum line length or line tension for each mooring line, associated to the optimization of the mooring line materials and sizes.
Basically, the main goal of this paper is to introduce a new method, which will provide the quickest way to find the best mooring system, defined here as that which minimizes platform responses.A genetic algorithm (GA) is applied in this contribution, and this paper describes exactly the procedure of developing a GA code directed toward the solution of mooring design optimization problems. In order to prove the efficiency and the vast potential of the proposed algorithm as a design tool, sample moorings are analyzed for different environmental conditions and the final results, including the time required to run them, are presented.  相似文献   
3.
The spatial and size distribution of sediment deposited from short periods of overland flow due to the effect of a simulated grass buffer strip was measured for low slopes of 1.6, 3.4 and 5.1%. These data were analysed so as to critically evaluate two alternative models of the process of re-entrainment of recently deposited sediment. A model of re-entrainment, previously thought to be appropriate only for a steady-state or equilibrium situation, was found to give better agreement with experiments than did a model previously used in the literature on this subject.  相似文献   
4.
The process of crater formation by the impact of water drops on soil, sand and various other target material was studied. Craters of various shapes and sizes were observed on different target materials or conditions, ranging from circumferential depression to completely hemispherical shape. Crater shape was dependent upon target material, its ?ow stress or shear strength and the presence and thickness of water on the surface. Between 5 and 22 per cent of impact energy was spent on cratering, but the relationship between crater volume and kinetic energy of a raindrop was curvilinear, indicating a lower ef?ciency of impact energy in removing target material as the energy increases. Impact impulse, on the other hand, showed a more linear relationship with crater volume, and the ratio of impulse over crater volume (I/V) remained constant for the entire range of drop sizes, impact velocities, and surface conditions used in this study. Surface shear strength, represented by the penetration depth of fall‐cone penetrometer, appeared to be a key factor involved in this process. An equation was developed which related crater volume to cone penetration depth and impact impulse. Crater volume, which appeared to be a better indicator of the total amount of material dislodged by a raindrop than splash amount, can thus be predicted using this equation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
5.
Multivariate statistical techniques, i.e., correlation coefficient analysis, principal components analysis (PCA), and hierarchical cluster analysis (CA), were applied to the total and water-soluble concentrations of potentially hazardous metals in sediments associated with the Sarcheshmeh mine, one of the largest Oligo-Miocene porphyry copper deposits in the world. The samples were analyzed for hazardous metal concentration levels by inductively coupled plasma mass spectrometry method. Results indicate that the contaminant metals As, Cd, Cu, Mo, S, Sb, Sn, Se, Pb, and Zn were positively correlated with the total concentrations. These hazardous metals also have strong association in the PCA and CA results. Different anthropic versus natural sources of contaminant metals were distinguished by using CA method. Water-soluble fraction of hazardous metals showed that the hydro-geochemical behavior of these metals in sediments is different considerably. Elements such as Cd, Co, Cr, Cu, Fe, Mn, Ni, S, and Zn are readily water soluble from contaminated samples, especially from evaporative mineral phases, while the release of As, Mo, Sb, and Pb into the water is limited by adsorption processes. Results obtained from the application of multivariate techniques on the water-soluble fraction data set show that the hazardous metals are categorized into three groups including (1) Ni, S, Co, Cu, Cr, and Fe; (2) Se, Mn, Cd, and Zn; and (3) Sb, As, Mo, and Sn. This classification describes the hydro-geochemical behavior of hazardous metals in water–sediment environments of the Sarcheshmeh porphyry copper mine and can be used as a basis in remedial and treatment strategies.  相似文献   
6.
Comparing spaceborne satellite images of Landsat‐8 Operational Land Imager (OLI) and Landsat‐7 Enhanced Thematic Mapper plus (ETM+) was undertaken to investigate the relative accuracy of mapping hydrothermal alteration minerals. The study investigated the northern part of Rabor, which contains copper mineralization occurrences, and is located in the Kerman Cenozoic magmatic assemblage (KCMA), Iran. Image processing methods of band ratio, principal component analysis (PCA), and spectral angle mapper (SAM) were used to map the distribution of hydrothermally altered rocks associated with the porphyry copper mineralization. The band ratio combination of both sensors for mapping altered areas showed similar outcomes. PCA exposed variations in the spatial distribution of hydroxyl‐bearing minerals. The representation of hydrothermal areas using OLI data was more satisfactory than when using ETM+ data. SAM analysis found similar results for mapping hydroxyl‐bearing zones. Verification of the results came through ground investigation and laboratory studies. Rock samples (n = 56) were collected to validate results using thin sections, X‐ray diffraction (XRD) and spectral analyses. Field observations and laboratory analysis revealed that phyllic and propylitic alterations dominate the alteration zones in the study area. Argillic and iron oxides/hydroxides alterations were observed to a lesser degree. The results indicate that alteration maps prepared by OLI data using PCA for visual interpretation are more suitable than those of ETM+ due to a higher radiometric resolution and lower interference between vegetation and altered areas. As the spectral bandwidth of ETM+ band 7 covers absorption feature of propylitic alteration, better mapping of propylitic alterations is achieved using ETM+ data.  相似文献   
7.
How to select a limited number of strong ground motion records (SGMRs) is an important challenge for the seismic collapse capacity assessment of structures. The collapse capacity is considered as the ground motion intensity measure corresponding to the drift‐related dynamic instability in the structural system. The goal of this paper is to select, from a general set of SGMRs, a small number of subsets such that each can be used for the reliable prediction of the mean collapse capacity of a particular group of structures, i.e. of single degree‐of‐freedom systems with a typical behaviour range. In order to achieve this goal, multivariate statistical analysis is first applied, to determine what degree of similarity exists between each selected small subset and the general set of SGMRs. Principal Component analysis is applied to identify the best way to group structures, resulting in a minimum number of SGMRs in a proposed subset. The structures were classified into six groups, and for each group a subset of eight SGMRs has been proposed. The methodology has been validated by analysing a first‐mode‐dominated three‐storey‐reinforced concrete structure by means of the proposed subsets, as well as the general set of SGMRs. The results of this analysis show that the mean seismic collapse capacity can be predicted by the proposed subsets with less dispersion than by the recently developed improved approach, which is based on scaling the response spectra of the records to match the conditional mean spectrum. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
8.
9.
The paper offers an analytical determination of the hydraulic properties of an unsaturated soil with reference to its retention curve, which describes the relationship between the volumetric water content and capillarity through matric suction. The analysis combines a particulate approach focused on the physics at the pore scale, including microstructural aspects, with a probabilistic approach where the void space and grain size are considered as random variables. In the end, the soil water characteristic curve of an unsaturated granular medium along a drying path can be derived analytically based on the sole information of particle size distribution. The analysis hinges on the tessellation of a wet granular system into an assemblage of tetrahedral unit cells revealing a pore network upon which capillary physics are computed with respect to pore throat invasion by a non-wetting fluid with evolving pendular capillary bridges. The crux of the paper is to pass from particle size probability distribution to a matching void space distribution to eventually reveal key information such as void cell and solid volume statistics. Making reasonable statistically based assumptions to render calculations tractable, the water retention curve can be readily constructed. Model predictions compare quite favourably with experimental data available for actual soils, especially in the high saturation range. Having a sound scientific basis, the model can be made amenable to address a variety of soils with a wider range of particle sizes.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号