首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
大气科学   1篇
地球物理   8篇
地质学   4篇
海洋学   9篇
天文学   2篇
自然地理   1篇
  2023年   1篇
  2015年   1篇
  2012年   2篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2005年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1986年   2篇
  1984年   1篇
排序方式: 共有25条查询结果,搜索用时 0 毫秒
1.
This study reports measurements of the Raman spectra of Lake Baikal gas hydrates and estimations of the hydration number of methane-rich samples. The hydration number of gas hydrates retrieved from the southern Baikal Basin (crystallographic structure I) was approx. 6.1. Consistent with previous results, the Raman spectra of gas hydrates retrieved from the Kukuy K-2 mud volcano in the central Baikal Basin indicated the existence of crystallographic structures I and II. Measurements of the dissociation heat of Lake Baikal gas hydrates by calorimetry (from the decomposition of gas hydrates to gas and water), employing the hydration number, revealed values of 53.7–55.5?kJ?mol–1 for the southern basin samples (structure I), and of 54.3–55.5?kJ?mol–1 for the structure I hydrates and 62.8–64.2?kJ?mol–1 for the structure II hydrates from the Kukuy K-2 mud volcano.  相似文献   
2.
We investigated the molecular composition (methane, ethane, and propane) and stable isotope composition (methane and ethane) of hydrate-bound gas in sediments of Lake Baikal. Hydrate-bearing sediment cores were retrieved from eight gas seep sites, located in the southern and central Baikal basins. Empirical classification of the methane stable isotopes (δ13C and δD) for all the seep sites indicated the dominant microbial origin of methane via methyl-type fermentation; however, a mixture of thermogenic and microbial gases resulted in relatively high methane δ13C signatures at two sites where ethane δ13C indicated a typical thermogenic origin. At one of the sites in the southern Baikal basin, we found gas hydrates of enclathrated microbial ethane in which 13C and deuterium were both highly depleted (mean δ13C and δD of –61.6‰ V-PDB and –285.4‰ V-SMOW, respectively). To the best of our knowledge, this is the first report of C2 δ13C–δD classification for hydrate-bound gas in either freshwater or marine environments.  相似文献   
3.
4.
Mercury emissions from the incineration of automobile shredder residues (ASRs) were investigated. Continuous monitoring of elemental and reactive gaseous Hg in flue gas was performed in lab-scale and plant-scale ASR incineration. Results of continuous monitoring agreed with those obtained using the JIS K0222 method and Ontario-Hydro method. Before cleaning by air pollutant control devices (APCDs), reactive Hg was the dominant form of that element in both lab-scale and plant-scale results. Emission factors of reactive Hg before APCDs estimated from monitoring results showed large differences between plant-scale and lab-scale emissions. The emission factor in the plant scale was more than 10 times larger than that in the lab-scale, which is explainable by the different Hg contents of ASR. Based on plant-scale monitoring at the stack, emission factors after APCDs were estimated as 0.79 mg-Hg/Mg-ASR for elemental Hg and 6.8 mg-Hg/Mg-ASR for reactive Hg. Using these emission factors, total Hg emissions from ASR incineration were estimated as 2.2 kg/a. An ASR incineration plant investigated in this study used highly effective APCDs. Consequently, these emission factors might result in underestimation of national Hg emissions from ASR incineration. Emission factors estimated from lab-scale monitoring at a fabric filter outlet side might be more appropriate. However, even if emission factors calculated from plant-scale or the lab-scale monitoring are used, estimated emissions are still less than 1.0% of total Hg emissions in Japan. Therefore, Hg emissions from ASR incineration can be evaluated as insignificant. Unless Hg contents of ASR increase extremely, ASR incineration would be a minor source of Hg atmospheric emission in Japan, even if all ASRs were incinerated.  相似文献   
5.
The Nasu Observatory, which is composed of eight 20 m elements, was constructed for observing radio transients over a wide field at 1400 MHz. We report on two radio transients detected in consecutive drift scanning observations at declination 32° over a period of about two months. One of the two transients, WJN J1039+3200, appeared at =10h39m40s±10s, δ=32°±0.4° on March 4, 2005, and the other one, WJN J0645+3200, appeared at =06h45m25s±10s, δ=32°±0.4° on March 24, 2005. Both exhibited flux densities in excess of 1 Jy, and the burst durations were up to two days. Since there are few examples of radio transients outside the Galactic plane, these are very important observations. We have previously reported on four radio transients with features that look like the two transients detected this time. Of these six WJN transients in total, five had a duration of up to two days, and one up to three days. Four of the transients were detected at high Galactic latitude of b > 30°. Counterparts of the six WJN transients included X-ray sources in four events and had a consistency of 66%. The consistency of γ-ray, PGC Galaxy, NVSS, and FIRST sources was concentrated at about 50%. We were not able to find any special features in the counterparts. The distribution was verified by making a log N–log S plot using data for the four previously detected transients and the new ones. As a result, the distribution of the radio transients that we observed might have an isotropic distribution not dependent on Galactic longitude and Galactic latitude. The detection probability was calculated based on the assumption of an isotropic distribution. The 2σ upper probability limit for detection of transients of 1000 mJy or more is 0.0049 [deg−2 yr−1]. We cannot yet identify these two radio transients, because their features are different from any radio bursts observed in the past.  相似文献   
6.
Thermal measurements and hydrate mapping in the vicinity of the K-2 mud volcano in Lake Baikal have revealed a particular type of association of thermal anomalies (29–121?mW?m–2) near hydrate-forming layers. Detailed coring within K-2 showed that hydrates are restricted to two distinct zones at sub-bottom depths exceeding 70–300?cm. Temperature data from stations with hydrate recovery and degassing features all display low thermal gradients. Otherwise, the thermal gradients within the mud volcano are generally increased. These findings imply a more complicated thermal regime than often assumed for mud volcanoes, with important roles for both fluids and hydrates. The coexistence of neighbouring low and high thermal anomalies is interpreted to result from discharging and recharging fluid activity, rather than hydrate thermodynamics. It is suggested that hydrates play a key role in controlling the fluid circulation pattern at an early stage. At a later stage, the inflow of undersaturated lake water would favour the dissolution of structure I hydrates and the formation of structure II hydrates, the latter having been observed on top of structure I hydrates in the K-2 mud volcano.  相似文献   
7.
Crystallization of authigenic carbonates in mud volcanoes at Lake Baikal   总被引:1,自引:0,他引:1  
This paper presents data on authigenic siderite first found in surface sediments from mud volcanoes in the Central (K-2) and Southern (Malen’kii) basins of Lake Baikal. Ca is the predominant cation, which substitutes Fe in the crystalline lattice of siderite. The enrichment of the carbonates in the 13C isotope (from +3.3 to +6.8‰ for the Malen’kii volcano and from +17.7 to +21.9‰ for K-2) results from the crystallization of the carbonates during methane generation via the bacterial destruction of organic matter (acetate). The overall depletion of the carbonates in 18O is mainly inherited from the isotopic composition of Baikal water.  相似文献   
8.
We report on the isotopic composition of dissolved inorganic carbon (DIC) in pore-water samples recovered by gravity coring from near-bottom sediments at gas hydrate-bearing mud volcanoes/gas flares (Malenky, Peschanka, Peschanka 2, Goloustnoe, and Irkutsk) in the Southern Basin of Lake Baikal. The δ13C values of DIC become heavier with increasing subbottom depth, and vary between ?9.5 and +21.4‰ PDB. Enrichment of DIC in 13C indicates active methane generation in anaerobic environments near the lake bottom. These data confirm our previous assumption that crystallization of carbonates (siderites) in subsurface sediments is a result of methane generation. Types of methanogenesis (microbial methyl-type fermentation versus CO2-reduction) were revealed by determining the offset of δ13C between dissolved CH4 and CO2, and also by using δ13C and δD values of dissolved methane present in the pore waters. Results show that both mechanisms are most likely responsible for methane generation at the investigated locations.  相似文献   
9.
A 24 hour time series survey was carried out during a spring tide (tidal range ca.2 m) of May 1995 on a tidal estuary in the Seto Inland Sea, Japan, in the context of an integrated program planned to quantify the dynamics of biophilic elements (carbon, nitrogen and phosphorus) and the roles played by the macrobenthos on the processes. Three stations were set along a transect line of about 1.4 km, which linked the river to the rear to the innermost part of the subtidal zone. Every hour, at each station, measurements were made of surface water temperature, salinity and dissolved oxygen concentration, and surface water was collected for the determination of nutrients [NH4 +−N, (NO3 +NO2 )−N, PO4 3−−P and Si (OH)4−Si]. During the ebb flow, riverine input of silicate and nitrate+nitrite significantly increased the concentrations of both the intertidal and the subtidal stations. Conversely, during the high tide, river nutrient concentrations were lowered by the mixing of fresh water with sea water. As a result, best (inverse) correlations were found at the river station for salinity against silicate (y=-2.9 Sal.+110.7,r 2=0.879) and nitrate+nitrite (y=-1.3 Sal.+48.4,r 2=0.796). In contrast, ammonium nitrogen concentrations were higher at intermediate salinities. Indeed, no significant correlation was found between salinity and ammonium. The effect of the macrobenthos, which is abundant on the intertidal flat, is discussed as a biological component that influences the processes of nutrient regeneration within the estuary. The effect of the tidal amplitude is an important one in determining the extent of the variations in nutrient concentrations at all three stations, which were stronger between the lower low tide and the higher high tide.  相似文献   
10.
Abstract Peridotite xenoliths from the subarc mantle, which have been rarely documented, are described from Iraya volcano of the Luzon arc, the Philippines, and are discussed in the context of wedge-mantle processes. They are mainly harzburgite, with subordinate dunite, and show various textures from weakly porphyroclastic (C-type) to extremely fine-grained equigranular (F-type). Textural characteristics indicate a transition from the former to the latter by recrystallization. The F-type peridotite has inclusion-rich fine-grained olivine and radially aggregated orthopyroxene, being quite different in texture from ordinary mantle-derived peridotites previously documented. Despite their strong textural contrast, the two types do not show any systematic difference in modal composition. The harzburgite of C-type has ordinary mantle peridotite mineralogy; olivine is mostly Fo91–92 and chromian spinel mostly has Cr#s (= Cr/[Cr + Al] atomic ratios) from 0.3 to 0.6. Olivine is slightly more Fe-rich (Fo89–91) and spinel is more enriched in Cr (the Cr#, 0.4–0.8) and Fe3+ in F-type peridotites than in C-type harzburgite. Orthopyroxene in F-type peridotites is relatively low in CaO (<1 wt%), Al2O3 (<2 wt%) and Cr2O3 (<0.4 wt%). The F-type peridotite was possibly formed from the C-type one by recrystallization including local dissolution and precipitation of orthopyroxene assisted by fluid (or melt) of subduction origin. Textural characteristics, however, indicate a deserpentinization origin from abyssal serpentinite of which protolith was a C-type peridotite. In this scenario the initial abyssal serpentinite was possibly dehydrated due to an initiation of magmatic activity beneath an incipient oceanic arc like Batan Island. The F-type peridotite is characteristic of the upper mantle of island arc, especially of incipient arc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号