首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   519篇
  免费   20篇
  国内免费   2篇
测绘学   10篇
大气科学   29篇
地球物理   122篇
地质学   166篇
海洋学   28篇
天文学   137篇
自然地理   49篇
  2021年   7篇
  2020年   15篇
  2019年   7篇
  2018年   9篇
  2017年   11篇
  2016年   18篇
  2015年   9篇
  2014年   12篇
  2013年   25篇
  2012年   17篇
  2011年   8篇
  2010年   12篇
  2009年   20篇
  2008年   12篇
  2007年   12篇
  2006年   20篇
  2005年   12篇
  2004年   11篇
  2003年   15篇
  2002年   19篇
  2001年   5篇
  2000年   9篇
  1999年   5篇
  1998年   6篇
  1997年   11篇
  1996年   9篇
  1995年   6篇
  1994年   5篇
  1992年   8篇
  1991年   6篇
  1990年   5篇
  1989年   7篇
  1988年   9篇
  1987年   6篇
  1985年   7篇
  1984年   10篇
  1983年   7篇
  1981年   6篇
  1980年   5篇
  1979年   4篇
  1976年   7篇
  1975年   12篇
  1974年   7篇
  1973年   7篇
  1970年   4篇
  1962年   4篇
  1960年   6篇
  1959年   4篇
  1955年   4篇
  1937年   4篇
排序方式: 共有541条查询结果,搜索用时 15 毫秒
1.
Y.C. Minh  W.M. Irvine   《New Astronomy》2006,11(8):594-599
The large-scale structure associated with the 2′N HNCO peak in Sgr B2 [Minh, Y.C., Haikala, L., Hjalmarson, Å., Irvine, W.M., 1998. ApJ 498, 261 (Paper I)] has been investigated. A ring-like morphology of the HNCO emission has been found; this structure may be colliding with the Principal Cloud of Sgr B2. This “HNCO Ring” appears to be centered at (l,b) = (0.7°,−0.07°), with a radius of 5 pc and a total mass of 1.0 × 105 to 1.6 × 106 M. The expansion velocity of the Ring is estimated to be 30–40 km s−1, which gives an expansion time scale of 1.5 × 105 year. The morphology suggests that collision between the Ring and the Principal Cloud may be triggering the massive star formation in the Sgr B2 cloud sequentially, with the latest star formation taking place at the 2′N position. The chemistry related to HNCO is not certain yet, but if it forms mainly via reaction with the evaporated OCN from icy grain mantles, the observed enhancement of the HNCO abundance can be understood as resulting from shocks associated with the collision between the Principal Cloud and the expanding HNCO Ring.  相似文献   
2.
In situ measurements at the lunar surface at millimeter resolution by the Apollo astronauts have been analyzed. Several statistical parameters have been determined for the landing site. The surface roughness has been found to be very nearly gaussian. The root-mean-square slopes have been obtained over scales between 0.5 mm and 5 cm. They steadily decrease with increasing scale length from 58° to 2° and are in reasonable agreement with radar-measured values. The autocorrelation coefficient of the height distribution has also been obtained. It has a scale-length of 0.7 mm.Adjunct Professor at the University of Massachusetts.Visiting Scholar at the University of Massachusetts.  相似文献   
3.
Max Kuperus 《Solar physics》1996,169(2):349-356
A model is presented for the origin of inverse polarity magnetic fields in the perpendicular as well as in the axial direction of quiescent prominences. The model is based on the presence of a discrete coronal arcade structure where magnetic separating surfaces can be identified. On the crossing of these separating surfaces magnetic reconnection driven by photospheric shear and converging motions can create the observed field direction in quiescent prominences.Dedicated to Cornelis de Jager  相似文献   
4.
A survey of the 4(04)-3(03) and 1(01)-0(00) transitions of HOCO+ has been made toward several molecular clouds. The HOCO+ molecule was not observed in any sources except Sgr B2 and Sgr A. The 5(05)-4(04) and 4(14)-3(13) transitions were also detected toward Sgr B2. The results indicate that gas phase CO2 is not a major carbon reservoir in typical molecular clouds. In Sgr B2, the HOCO+ antenna temperature exhibits a peak approximately 2' north of the Sgr B2 central position (Sgr B2[M]) and the 4(04)-3(03) line emission is extended over a approximately 10' x 10' region. The column density of HOCO+ at the northern peak in Sgr B2 is approximately 3 x 10(14) cm-2, and the fractional abundance relative to H2 > or = 3 x 10(-10), which is about 2 orders of magnitude greater than recent predictions of quiescent cloud ion-molecule chemistry.  相似文献   
5.
We report the astronomical identification of the cyanomethyl radical, CH2CN, the heaviest nonlinear molecular radical to be identified in interstellar clouds. The complex fine and hyperfine structures of the lowest rotational transitions at about 20.12 and 40.24 GHz are resolved in TMC-1, where the abundance appears to be about 5 x 10(-9) relative to that of H2. This is significantly greater than the observed abundance of CH3CN (methyl cyanide) in TMC-1. In Sgr B2 the hyperfine structure is blended in the higher frequency transitions at 40, 80, and 100 GHz, although the spin-rotation doubling is clearly evident. Preliminary searches in other sources indicate that the distribution of CH2CN is similar to that for such carbon chain species as HC3N or C4H.  相似文献   
6.
We have used observations of the rare isotopes of HCN and HNC to determine the relative abundance of these two chemical isomers along the central ridge of the Orion molecular cloud. The abundance ratio [HCN]/[HNC] decreases by more than an order of magnitude from the relatively warm plateau and hot core sources toward the KL nebula to the colder, more quiescent clouds to the north and south. Even in the cooler regions, however, the ratio is an order of magnitude larger than that found in previous investigations of cold dark clouds. We determine the kinetic temperature in the regions we have studied from new observations of methylacetylene (CH3CCH), together with other recent estimates of the gas temperature near KL. The results suggest that the warmer portions of the cloud are dominated by different chemical pathways than those in the general interstellar cloud material.  相似文献   
7.
Résumé Les observations de deux stations situées à l'entrée de la vallée du Rhône et à l'intérieur de celle-ci permettent de déterminer dans une certaine mesure comment l'air froid pénètre dans cette longue vallée des Alpes suisses. L'accès se fait beaucoup plus souvent par-dessus les montagnes de l'Ouest ou du Nord que par le chenal de la vallée seulement.
Summary The observations of two stations at the entrance and in the interior of the Rhône valley allow to a certain degree to determine how cold air penetrates this long extended valley of the Swiss Alps. The influx of air takes much more frequently place over the mountains in the West and North than through the trough of the valley.

Zusammenfassung Die Beobachtungen von zwei Stationen, die am Eingang und im Inneren des Rhonetals gelegen sind, erlauben einigermaßen festzustellen, wie die Kaltluft in dieses langgestreckte Tal der Schweizeralpen eindringt. Dabei erfolgt der Luftzustrom viel häufiger über die Berge im W und N als ausschließlich durch die Talrinne.


Avec 1 Figure  相似文献   
8.
A finite-difference quasigeostrophic (QG) model of an open ocean region has been employed to produce a dynamically constrained synthesis of acoustic tomography and satellite altimetry data with in situ observations. The assimilation algorithm is based upon the 4D variational data interpolation scheme controlled by the model's initial and boundary conditions. The data sets analyzed include direct and differential travel times measured at the array of five acoustic transceivers deployed by JAMSTEC in the region of the Kuroshio Extension in 1997, Topex/Poseidon altimetry, CTD soundings, and ADCP velocity profiles. The region monitored is located within the area 27.5°–36.5°N, 143°–155°. The results of assimilation show that mesoscale variability can be effectively reconstructed by five transceivers measuring direct and reciprocal travel times supported by relatively sparse in situ measurements. The misfits between model and data lie within the observational error bars for all the data types used in assimilation. We have compared the results of assimilation with the statistical inversion of travel time data and analyzed energy balances of the optimized model solution. Energy exchange between the depth-averaged and shear components of the observed currents reveals a weak decay of the barotropic mode at the rate of 0.2 ± 0.7⋅10−5 cm2/s3 due to topographic interaction. Mean currents in the region are unstable with an estimate of the available potential energy flux from the mean current to the eddies of 4.7 ± 2.3⋅10−5 cm2/s3. Kinetic energy transition has the same sign and is estimated as 2.8 ± 2.5⋅10−5 cm2/s3. Potential enstrophy is transferred to the mesoscale at a rate of 5.5 ± 2.7⋅10−18 s−3. These figures provide observational evidence of the properties of free geostrophic turbulence which were predicted by theory and observed in numerical experiments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
9.
A new interstellar molecular ion, H2COH+ (protonated formaldehyde), has been detected toward Sgr B2, Orion KL, W51, and possibly in NGC 7538 and DR21(OH). Six transitions were detected in Sgr B2(M). The 1(1,0)-1(0,1) transition was detected in all sources listed above. Searches were also made toward the cold, dark clouds TMC-1 and L134N, Orion (3N, 1E), and a red giant, IRC + 10216, without success. The excitation temperatures of H2COH+ are calculated to be 60-110 K, and the column densities are on the order of 10(12)-10(14) cm-2 in Sgr B2, Orion KL, and W51. The fractional abundance of H2COH+ is on the order of 10(-11) to 10-(9), and the ratio of H2COH+ to H2CO is in the range 0.001-0.5 in these objects. The values in Orion KL seem to be consistent with the "early time" values of recent model calculations by Lee, Bettens, & Herbst, but they appear to be higher than the model values in Sgr B2 and W51 even if we take the large uncertainties of column densities of H2CO into account. We suggest production routes starting from CH3OH may play an important role in the formation of H2COH+.  相似文献   
10.
We report the first detection of interstellar nitrogen sulfide (NS) in cold dark clouds. Several components of the 2 pi 1/2, J = 3/2 --> 1/2 and J = 5/2 --> 3/2 transitions were observed in TMC-1 and L134N. The inferred column density for TMC-1 is NNS approximately 8 x 10(12)cm-2 toward the NH3 peak in that cloud, and in L134N is NNS approximately 3 x 10(12)cm-2 toward the position of peak NH3 emission. These values correspond to fractional abundances relative to molecular hydrogen of fNS approximately 8 x 10(-10) for TMC-1, and fNS approximately 6 x 10(-10) for L134N. The NS emission is extended along the TMC-1 ridge and is also extended in L134N. The measured abundances are significantly higher than those predicted by some recent gas phase ion-molecule models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号