首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
地球物理   4篇
地质学   6篇
自然地理   1篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
The detrital mineralogy as well as diagenetic characters of the Dhosa Sandstone Member of Chari Formation exposed at the Lerdome, south of Bhuj was studied. In order to assess the potential of the Dhosa Sandstone as a reservoir, it is substantial to understand the diagenetic processes that are controlled largely by post-depositional cementation and compaction in addition to framework composition and original depositional textures. The petrologic analysis of 33 thin sections was carried out to discern primary composition and diagenetic features including primary and secondary porosity patterns. Monocrystalline quartz dominates the detrital mineralogy followed by polycrystalline quartz. Among the polycrystalline variety recrystallized metamorphic quartz surpasses stretched metamorphic quartz in terms of abundance. Feldspars comprise microcline and plagioclase where the former is dominant over the latter. Orthoclase too comprises a very small percentage. Mica, chert, rock fragments, and heavies form the remaining detrital constituent in descending order of their constituent percentage. The diagenetic precipitates are mainly carbonate (8.30%) and iron (7.80%) followed by clay (0.66%) and silica (0.88%) that are minor constituent of the total cementing material. The main paragenetic events identified are early cementation, mechanical compaction, late cementation, dissolution, and authigenesis of clays. The overall reservoir quality seems to be controlled by compaction and authigenic carbonate cementation. The minus cement porosity average 29.4%. The porosity loss due to compaction is 21.92% and by cementation is 29.71%. The loss of original porosity was due to early cementation followed by moderate mechanical compaction during shallow burial. Preservation of available miniscule primary porosity was ascribed to dissolution of carbonates and quartz overgrowth which resisted chemical compaction during deep burial. The studied sandstones may have low reservoir quality owing to existing porosity of less than 9%. More carbonate dissolution and its transformation in dolomite in sub-surface condition and macro-fracture porosity may result in enhanced secondary porosity and good diagenetic traps.  相似文献   
2.
Hybrid simulation combines numerical and experimental methods for cost‐effective, large‐scale testing of structures under simulated earthquake loading. Structural system level response can be obtained by expressing the equation of motion for the combined experimental and numerical substructures, and solved using time‐stepping integration similar to pure numerical simulations. It is often assumed that a reliable model exists for the numerical substructures while the experimental substructures correspond to parts of the structure that are difficult to model. A wealth of data becomes available during the simulation from the measured experiment response that can be used to improve upon the numerical models, particularly if a component with similar structural configuration and material properties is being tested and subjected to a comparable load pattern. To take advantage of experimental measurements, a new hybrid test framework is proposed with an updating scheme to update the initial modeling parameters of the numerical model based on the instantaneously‐measured response of the experimental substructures as the test progresses. Numerical simulations are first conducted to evaluate key algorithms for the selection and calibration of modeling parameters that can be updated. The framework is then expanded to conduct actual hybrid simulations of a structural frame model including a physical substructure in the laboratory and a numerical substructure that is updated during the tests. The effectiveness of the proposed framework is demonstrated for a simple frame structure but is extendable to more complex structural behavior and models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
3.
Base isolated buildings subjected to extreme earthquakes can exceed their design displacements and impact against the surrounding moat wall. To better understand the consequences of impact on the superstructure, an impact element considering moat wall flexibility is proposed based on impact theory and observations during experimental simulations. It is demonstrated that numerical simulations using the proposed impact element can capture the dominant characteristics of the contact force observed in experiments of base isolated buildings impacting various moat wall configurations including concrete walls with soil backfill and rigid steel walls. The contact force is dependent on impact velocity, geometry, and material properties at the contact surface, and the global dynamic characteristic of the moat wall. Properties of the moat wall impact element are derived based on mechanics‐based models considering material properties and geometric measurements of the experimental setup. For this purpose, the moat wall is modeled as a flexural column with a concentrated nonlinear hinge at its base and soil backfill considered through a damped elastic foundation then generalized into a single degree of freedom system. The resulting impact element is shown to accurately capture both local deformation and the vibration aspects of impact observed in experiments and the effects of impact on superstructure response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
4.
Rock mass characterization of Utari dam in Lalitpur district of Uttar Pradesh was done to identify different stability classes of rock mass. For better stability of Utari dam, foundation conditions were carefully studied by detailed field investigations of the site supplemented by laboratory tests. During feasibility and preliminary stages, rock mass characterization of slopes was conducted to identify the vulnerable zones of failure. Rock mass characterization was done by compilation of information obtained from intact rock as well as from rock mass to determine its grade and long term slope stability of the site. On the basis of Rock Mass Rating (RMR) and Geological Strength Index (GSI) slope stability is identified which lies under good quality rock mass. Kinematic analysis was conducted to find out the probability for different types of structurally controlled slope failure. Microscopic analyses were conducted to identify the degree of chemical alteration of feldspar. Clay formation by sericitization along joint planes is harmful for the stability of dam structure. Remedial measures must be taken to reduce the extent of chemical alteration. Granitoids at dam site forms a compact and stable foundation consisting of four sets of joints in which two sets were prominent which are dipping on the upstream side of the dam which reveals good condition on the dam site as leakage from reservoir will be minimum and least up-thrust on the dam structure.  相似文献   
5.
Slope stability of mine slopes is often associated with safety and economics during excavation. Sandstone is excavated from Rasulpur area of Fatehpur Sikri in Uttar Pradesh for the purpose of crushed, decorative and dimension stones. In the present paper an attempt has been made to characterize the rock slope faces into different stability classes. Characterization is based on geological and geotechnical parameters recorded on the outcrop during field investigation and supplemented by geomechanical properties by the laboratory test for strength of the rock intact. SMR Geomechanics classification is used to identify the stability class and remedial measures are also suggested to reduce any possible hazard. Kinematic analysis of slope was also investigated to determine the probability of any possible structurally controlled failure. On the basis of SMR Geomechanics calculations slope under investigation lies under good stability class i.e. 2a and 2b. Installation of nets during excavation can be done and for better safety spot and systematic rock bolting can be done. Kinematic study reveals that toppling failures may occur, special care must be given to the joint set which can trigger toppling failure.  相似文献   
6.
科洛金矿床位于黑龙江省嫩江—黑河构造混杂岩带中,为一正在勘查的中型金矿床。前人研究认为该矿床为一中温、富水、低盐度的韧性剪切带型金矿床。但随着勘查工作的持续开展,新发现了大量含多金属硫化物的石英脉型矿石。为进一步明确该矿床成因,对科洛金矿床内韧性变形和浸染状-团块状两种不同产状黄铁矿进行了系统的成分标型及稳定同位素特征研究。结果表明:韧性变形黄铁矿较浸染-团块状黄铁矿的S/Fe值低,Au、Ag、Co含量高,As含量低,总体显示韧性变形黄铁矿相对贫硫;黄铁矿微量元素显示两类黄铁矿REE具有相似的地球化学特征,整体呈轻稀土富集、重稀土亏损的“右倾”式稀土配分模式。稀土元素总量为17.00×10-6~66.95×10-6,韧性变形黄铁矿含量明显偏低,LREE/HREE值为5.25~12.50,相对较稳定。Y/Ho值与地幔和地壳重合范围较多,Zr/Hf值、Nb/Ta值变化范围较大,显示成矿环境不稳定;黄铁矿3He含量为2.405×10-13~10.811×10-13,4He含量为3.35×10-7~4.99×10-7,3He-4He图和R/Ra-40Ar/36Ar图显示成矿流体有以地幔为主的壳幔混源特征,成矿过程应有大气降水的参与;黄铁矿δ34S变化范围小,集中在+2.3‰~+7.6‰(韧性变形黄铁矿δ34S平均值偏低),稍正向偏离陨石硫特征;黄铁矿的206Pb/204Pb=18.157~18.211;207Pb/204Pb=15.542~15.594;208Pb/204Pb=38.032~38.218(韧性变形黄铁矿的206Pb/204Pb、207Pb/204Pb、208Pb/204Pb平均值偏低),均显示与造山作用关系密切。利用黄铁矿化学成分特征元素Co/Ni值及Co-Ni成因判别图解认为科洛金矿有热液成因矿床特征;利用w(Fe+S)-w(As)图解和Co-Ni-As含量图解显示石英脉型矿石反映浅成低温热液型金矿特征。综合区域变质变形事件、典型矿床特征及矿区内已取得的年龄、流体包裹体等相关数据认为,科洛金矿床应存在两期矿化:三叠纪形成的韧性剪切带型金矿床和白垩纪形成的浅成低温热液型金矿床。建议在今后的矿产勘查中注意寻找真正的韧性剪切带型金矿。  相似文献   
7.
8.
In the Kachchh Mainland, the Jumara Dome mixed carbonate-siliciclastic succession is represented by the Jhurio and Patcham formations and siliciclastic-dominating Chari Formation (Bathonian to Oxfordian). The Ju- mara Dome sediments were deposited during sea-level fluctuating, and were interrupted by storms in the shallow marine environment. The sandstones are generally medium-grained, moderately sorted, subangular to subrounded and of low sphericity. The sandstones are mineralogically mature and mainly composed of quartzarenite and subar- kose. The plots of petrofacies in the Qt-F-L, Qm-F-Lt, Qp-Lv-Ls and Qm-P-K ternary diagrams suggest mainly the basement uplift source (craton interior) in rifted continental margin basin setting. The sandstones were cemented by carbonate, iron oxide and silica overgrowth. The Chemical Index of Alteration values (73% sandstone and 81% shale) indicate high weathering conditions in the source area. Overall study suggests that such strong chemical weathering conditions are of unconformity with worldwide humid and warm climates during the Jurassic period. Positive correlations between A1203 and Fe203, TiO2, Na20, MgO, K20 are evident. A high correlation coefficient between A1203 and K20 in shale samples suggests that clay minerals control the major oxides, The analogous con- tents of Si, A1, Ti, LREE and TTE in the shale to PAAS with slightly depleted values of other elements ascribe a PAAS like source (granitic gneiss and minor mafics) to the present study. The petrographic and geochemical data strongly suggest that the studied sandstones/shales were deposited on a passive margin of the stable intracratonic basin.  相似文献   
9.
Base‐isolated buildings are typically important facilities expected to remain functional after a major earthquake. However, their behavior under extreme ground shaking is not well understood. A series of earthquake simulator experiments were performed to assess performance limit states of seismically isolated buildings under strong ground motions, including pounding against a moat wall. The test setup consists of a quarter scale three‐story frame isolated at the base with friction pendulum bearings and a moat wall model. An effort was made to properly scale the strength and the stiffness of the frame relative to the bearings properties from a professionally designed isolated three‐story steel intermediate moment‐resisting frame so that realistic yielding mechanisms can be observed. The moat wall was modeled as either a rigid triangle steel stopper or a concrete wall of various thicknesses with soil backfill. The moat wall gap was set to various displacement increments to examine the sensitivity of this parameter and also to assess the effects of impact on the superstructure at different velocities. The test results indicate that the contact forces are largely dependent on the gap distance, impact velocity and wall flexibility and, in extreme cases, pounding can induce yielding in the superstructure. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号