首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   12篇
  国内免费   1篇
测绘学   5篇
大气科学   8篇
地球物理   50篇
地质学   80篇
海洋学   13篇
天文学   40篇
自然地理   46篇
  2024年   1篇
  2022年   3篇
  2021年   10篇
  2020年   3篇
  2019年   6篇
  2018年   9篇
  2017年   8篇
  2016年   8篇
  2015年   3篇
  2014年   7篇
  2013年   12篇
  2012年   6篇
  2011年   13篇
  2010年   7篇
  2009年   13篇
  2008年   12篇
  2007年   13篇
  2006年   11篇
  2005年   5篇
  2004年   9篇
  2003年   10篇
  2002年   6篇
  2000年   4篇
  1999年   4篇
  1998年   7篇
  1997年   1篇
  1995年   2篇
  1994年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   3篇
  1987年   3篇
  1986年   7篇
  1985年   3篇
  1984年   5篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1976年   4篇
  1974年   1篇
  1968年   1篇
  1956年   1篇
  1949年   2篇
排序方式: 共有242条查询结果,搜索用时 15 毫秒
1.
2.
Mass movements such as landslides in mountainous terrains are natural degradation processes and one of the most important landscape-building factors. Varunawat Parbat overlooking Uttarkashi town witnessed a series of landslides on 23 September 2003 and the debris slides and rock falls continued for 2 weeks. This landslide complex was triggered due to the incessant rainfall prior to the event, and its occurrence led to the blockage of the pilgrim route to Gangotri (source of the Ganges river) and evacuation of thousands of people to safer places. Though there was no loss of lives due to timely evacuation, heavy losses to the property were reported. High-resolution stereoscopic earth observation data were acquired after the incidence to study the landslide in detail with emphasis on the cause of the landslide and mode of failure. Areas along the road and below the Varunawat foothill region are mapped for landslide risk. It was found that the foothill region of the Varunawat Parbat was highly disturbed by man-made activities and houses are dangerously located below steep slopes. The potential zones for landslides along with the existing active and old landslides are mapped. These areas are critical and their treatment with priority is required in order to minimise further landslide occurrences.  相似文献   
3.
Catalytic cathodic stripping voltammetry (CSV) preceded by adsorptive collection of complexes of 1-nitroso-2-napthol (NN) can be used to determine iron in seawater. It is shown here that iron(II) is effectively masked in the presence of 2,2-dipyridyl (Dp) so that iron(III) is measured selectively. The concentration of iron(II) is then calculated as the difference between the concentrations of reactive iron (FeR) in the absence and presence of 2 μM Dp, FeR being defined as that which was complexed by 20 μM NN at pH 6.9 in the presence of 1.8 mM H2O2 and 5 ppm sodium dodecyl sulphate. A 30 min reaction time was allowed for Dp to react with iron(II) in seawater prior to the determination of reactive iron(III) using the same conditions as used for FeR. Detection limits of 0.08 nM, 0.077 nM and 0.12 nM were obtained for FeR, iron(III) and iron(II), respectively, using a 60 s deposition time.The method was utilised to determine the redox speciation of iron in the northern North Sea. Concentrations of FeR ranged between 0.8 and 3.5 nM with nutrient-like depth profiles. Iron(II) was found to be present at concentrations up to 1.2 nM, the highest concentrations occurring in the upper 20 m of the water column.  相似文献   
4.
Physical and biological processes controlling spatial and temporal variations in material concentration and exchange between the Southern Everglades wetlands and Florida Bay were studied for 2.5 years in three of the five major creek systems draining the watershed. Daily total nitrogen (TN), and total phosphorus (TP) fluxes were measured for 2 years in Taylor River, and ten 10-day intensive studies were conducted in this creek to estimate the seasonal flux of dissolved inorganic nitrogen (N), phosphorus (P), total organic carbon (TOC), and suspended matter. Four 10-day studies were conducted simultaneously in Taylor, McCormick, and Trout Creeks to study the spatial variation in concentration and flux. The annual fluxes of TOC, TN, and TP from the Southern Everglades were estimated from regression equations. The Southern Everglades watershed, a 460-km2 area that includes Taylor Slough and the area south of the C-111 canal, exported 7.1 g C m−2, 0.46 g N m−2, and 0.007 g P m−2, annually. Everglades P flux is three to four orders of magnitude lower than published flux estimates from wetlands influenced by terrigenous sedimentary inputs. These low P flux values reflect both the inherently low P content of Everglades surface water and the efficiency of Everglades carbonate sediments and biota in conserving and recycling this limiting nutrient. The seasonal variation of freshwater input to the watershed was responsible for major temporal variations in N, P, and C export to Florida Bay; approximately 99% of the export occurred during the rainy season. Wind-driven forcing was most important during the later stages of the dry season when low freshwater head coincided with southerly winds, resulting in a net import of water and materials into the wetlands. We also observed an east to west decrease in TN:TP ratio from 212:1 to 127:1. Major spatial gradients in N:P ratios and nutrient concentration and flux among the creek were consistent with the westward decrease in surface water runoff from the P-limited Everglades and increased advection of relatively P-rich Gulf of Mexico (GOM) waters into Florida Bay. Comparison of measured nutrient flux from Everglades surface water inputs from this study with published estimates of other sources of nutrients to Florida Bay (i.e. atmospheric deposition, anthropogenic inputs from the Florida Keys, advection from the GOM) show that Everglades runoff represents only 2% of N inputs and 0.5% of P input to Florida Bay.  相似文献   
5.
Martha S. Hanner 《Icarus》1980,43(3):373-380
The zodiacal light brightness and measured spatial density of the interplanetary dust lead to a mean geometric albedo of 0.24 for the dust particles near 1 AU; whereas the composition of collected micrometeroids suggests a geometric albedo ?0.1. The data do not support the very low albedo (?0.01) proposed by A. F. Cook [Icarus33 (1978), 349–360]. The evidence is against a change in the mean particle albedo between 0.1 and 2 AU. Beyond 2 AU the data are unclear and a change in albedo is not ruled out.  相似文献   
6.
Following a period of net uplift at an average rate of 15±1 mm/year from 1923 to 1984, the east-central floor of Yellowstone Caldera stopped rising during 1984–1985 and then subsided 25±7 mm during 1985–1986 and an additional 35±7 mm during 1986–1987. The average horizontal strain rates in the northeast part of the caldera for the period from 1984 to 1987 were: 1 = 0.10 ± 0.09 strain/year oriented N33° E±9° and 2 = 0.20 ± 0.09 strain/year oriented N57° W±9° (extension reckoned positive). A best-fit elastic model of the 1985–1987 vertical and horizontal displacements in the eastern part of the caldera suggests deflation of a horizontal tabular body located 10±5 km beneath Le Hardys Rapids, i.e., within a deep hydrothermal system or within an underlying body of partly molten rhyolite. Two end-member models each explain most aspects of historical unrest at Yellowstone, including the recent reversal from uplift to subsidence. Both involve crystallization of an amount of rhyolitic magma that is compatible with the thermal energy requirements of Yellowstone's vigorous hydrothermal system. In the first model, injection of basalt near the base of the rhyolitic system is the primary cause of uplift. Higher in the magmatic system, rhyolite crystallizes and releases all of its magmatic volatiles into the shallow hydrothermal system. Uplift stops and subsidence starts whenever the supply rate of basalt is less than the subsidence rate produced by crystallization of rhyolite and associated fluid loss. In the second model, uplift is caused primarily by pressurization of the deep hydrothermal system by magmatic gas and brine that are released during crystallization of rhyolite and them trapped at lithostatic pressure beneath an impermeable self-sealed zone. Subsidence occurs during episodic hydrofracturing and injection of pore fluid from the deep lithostatic-pressure zone into a shallow hydrostatic-pressure zone. Heat input from basaltic intrusions is required to maintain Yellowstone's silicic magmatic system and shallow hydrothermal system over time scales longer than about 105 years, but for the historical time period crystallization of rhyolite can account for most aspects of unrest at Yellowstone, including seismicity, uplift, subsidence, and hydrothermal activity.  相似文献   
7.
8.
The columnar cactus Polaskia chende, endemic to Central Mexico, occurs in the wild and in silviculturally managed populations where artificial selection for better edible fruits operates by sparing and favouring desirable phenotypes during vegetation clearance. Wild and managed populations were compared in morphology and reproductive biology to analyse if human selection has influenced phenotypic divergence, if it has modified breeding systems and if reproductive isolation exists between them. Fruits from managed populations were larger (6·36±0·17 cm3), heavier (19·62±1·32), sweeter (9·07±0·25 °Brix), and with thinner peel (2·09±0·13 mm) than those from wild populations (5·77±0·18 cm3, 15·73±0·85 g, 8·23±0·31 °Brix, and 2·58±0·14 mm, respectively). Both population types bloom synchronically, show diurnal anthesis, with bees as the most likely pollinators, and have breeding system predominantly self-incompatible. Spatial and temporal barriers to pollen exchange between wild and managed populations are unlikely, and morphological differences would be related with an ongoing process of artificial selection.  相似文献   
9.
The inference of fault geometry from suprajacent fold shape relies on consistent and verified forward models of fault-cored folds, e.g. suites of models with differing fault boundary conditions demonstrate the range of possible folding. Results of kinematic (fault-parallel flow) and mechanical (boundary element method) models are compared to ascertain differences in the way the two methods simulate flexure associated with slip along flat-ramp-flat geometry. These differences are assessed by systematically altering fault parameters in each model and observing subsequent changes in the suprajacent fold shapes. Differences between the kinematic and mechanical fault-fold relationships highlight the differences between the methods. Additionally, a laboratory fold is simulated to determine which method might best predict fault parameters from fold shape. Although kinematic folds do not fully capture the three-dimensional nature of geologic folds, mechanical models have non-unique fold-fault relationships. Predicting fault geometry from fold shape is best accomplished by a combination of the two methods.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号