首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
地球物理   1篇
地质学   1篇
  2017年   1篇
  2015年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The potential of the autoclaved Tunisian landfill leachate treatment using microalgae (Chlorella sp.) cultivation was investigated in this study. Landfill leachate was collected from Borj Chakir landfill, Tunisia. A full factorial experimental design 22 was proposed to study the effects of the incubation time and leachate ratio factors on the organic matter removal expressed in chemical oxygen demand (COD) and ammoniacal nitrogen (NH4─N) and on the biological response of Chlorella sp. expressed by the cell density and chlorophyll content. All experiments were batch runs at ambient temperature (25 ± 2 °C). The Chlorella sp. biomass and chlorophyll a concentrations of 1.2 and 5.32 mg L?1, respectively, were obtained with 10% leachate spike ratio. The obtained results showed that up to 90% of the ammoniacal nitrogen in landfill leachate was removed in 10% leachate ratio spiked medium with a residual concentration of 40 mg L?1. The maximum COD removal rate reached 60% within 13 days of incubation time indicating that microalgae consortium was quite effective for treating landfill leachate organic contaminants. Furthermore, with the 10% leachate ratio spiked medium, the maximum lipid productivity was 4.74 mg L?1 d?1. The present study provides valuable information for potential adaptation of microalgae culture and its contribution for the treatment of Tunisian landfill leachate.  相似文献   
2.
Hill reservoirs are rain water‐harvesting structures that have been increasingly adopted in arid and semi‐arid regions, such as North Africa, to capture and conserve runoff water and for use as alternative water resources in agricultural development. Currently, process‐based information on reservoir hydrology is needed to improve reservoir management practices. The study aims to develop an approach to estimate the reservoir–subsurface exchange flux and its associated error at the annual, monthly, and intra‐monthly time scales to better understand the hydrological functioning and dynamics of hill reservoirs. This approach is based on a hydrological water balance of the hill reservoir by considering all water input and output fluxes and their associated errors. The results demonstrate the ability and relevance of the approach in estimating the net reservoir–subsurface exchange flux and its error estimations at various time scales. Its application on the Kamech catchment (Northern Tunisia) for the 2009–2012 period demonstrates that the net reservoir–subsurface exchange flux is positive, i.e. the infiltration from the hill reservoir to the aquifer dominates over the discharge from the aquifer to the reservoir. Moreover, reservoir–subsurface exchange constitutes the main output component in the water balance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号