首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   1篇
  国内免费   1篇
地球物理   1篇
地质学   9篇
天文学   28篇
  2022年   2篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  1980年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
1.
In this paper, we have analyzed neutron spectroscopy data gathered by the High Energy Neutron Detector (HEND) instrument onboard Mars Odyssey for comparison of polar regions. It is known that observation of the neutron albedo of Mars provides important information about the distribution of water-ice in subsurface layers and about peculiarities of the CO2 seasonal cycle. It was found that there are large water-rich permafrost areas with contents of up to ∼50% water by mass fraction at both the north and south Mars polar regions. The water-ice layers at high northern latitudes are placed close to the surface, but in the south they are covered by a dry and relatively thick (10-20 cm) layer of soil. Analysis of temporal variations of neutron flux between summer and winter seasons allowed the estimation of the masses of the CO2 deposits which seasonally condense at the polar regions. The total mass of the southern seasonal deposition was estimated as 6.3×1015 kg, which is larger than the total mass of the seasonal deposition at the north by 40-50%. These results are in good agreement with predictions from the NASA Ames Research Center General Circulation Model (GCM). But, the dynamics of the condensation and sublimation processes are not quite as consistent with these models: the peak accumulation of the condensed mass of CO2 occurred 10-15 degrees of Ls later than is predicted by the GCM.  相似文献   
2.
A high-resolution ion-microprobe (SHRIMP) U–Pb zircon age from a tuff layer intercalated in the ammonoid bearing sedimentary succession of the Neuquén Basin in Argentina provides a robust geochronologic date to add to the absolute ages and to improve the relative chronology of the Early Cretaceous Hauterivian stage. The tuff layer appears interbedded between shales of the upper member (Agua de la Mula) of the Agrio Formation within the Spitidiscus riccardii ammonoid zone (base of the Late Hauterivian) yielding a date of 132.5 ± 1.3 Ma. This date confirms and supports an accurate correlation between the ammonoid biostratigraphy of the Neuquén Basin with the Western Mediterranean Province of the Tethys during the Early Cretaceous and matches with the most recently published time scale. It also casts doubts on the validity of K–Ar ages on glauconite-grains recently reported from the Lower Cretaceous of the Vocontian Basin of France.  相似文献   
3.
4.
The seasonal variation of neutron emissions from Mars in different spectral intervals measured by the HEND neutron detector for the entire Martian year are analyzed. Based on these data, the spatial variations of the neutron emissions from the planet are globally mapped as a function of season, and the dynamics of seasonal variation of neutron fluxes with different energies is analyzed in detail. No differences were found between seasonal regimes of neutron fluxes in different energy ranges in the southern hemisphere of Mars, while the regime of fast neutrons (with higher energies) during the northern winter strongly differs from that during the southern winter. In winter (L s = 270°–330°), the fast neutron fluxes are noticeably reduced in the northern hemisphere (along with the consecutive thickening of the seasonal cap of solid carbon dioxide). This provides evidence of a temporary increase in the water content in the effective layer of neutron generation. According to the obtained estimates, the observed reduction of the flux of fast neutrons in the effective layer corresponds to an increase in the water abundance of up to 5% in the seasonal polar cap (70°–90°N), about 3% at mid-latitudes, and from 1.5 to 2% at low latitudes. The freezing out of atmospheric water at the planetary surface (at middle and high latitudes) and the hydration of salt minerals composing the Martian soil are considered as the main processes responsible for the temporary increase in the water content in the soil and upper layer of the seasonal polar cap. The meridional atmospheric transport of water vapor from the summer southern to the winter northern hemisphere within the Hadley circulation cell is a basic process that delivers water to the subsurface soil layer and ensures the observed scale of the seasonal increase in water abundance. In the summer northern hemisphere, the similar Hadley circulation cell transports mainly dry air masses to the winter southern hemisphere. The point is that the water vapor becomes saturated at lower heights during aphelion, and the bulk of the atmospheric water mass is captured in the near-equatorial cloudy belt and, thus, is only weakly transferred to the southern hemisphere. This phenomenon, known as the Clancy effect, was suggested by Clancy et al. (1996) as a basic mechanism for the explanation of the interhemispheric asymmetry of water storage in permanent polar caps. The asymmetry of seasonal meridional circulation of the Martian atmosphere seems to be another factor determining the asymmetry of the seasonal water redistribution in the “atmosphere-regolith-seasonal polar caps” system, found in the peculiarities of the seasonal regime of the neutron emission of Mars.  相似文献   
5.
6.
Mitrofanov  I. G.  Litvak  M. L.  Kozyrev  A. S.  Sanin  A. B.  Tret'yakov  V. I.  Boynton  W. V.  Shinohara  C.  Hamara  D.  Saunders  S.  Drake  D. M. 《Solar System Research》2003,37(5):366-377
We present the first results of the global neutron mapping of Mars by the Russian High-Energy Neutron Detector (HEND) onboard the US 2001 Mars Odyssey spacecraft. Global neutron maps of Mars in various spectral ranges allow the content of water ice and adsorbed and bound water in a near-surface layer of the planet 1 to 2 m in thickness to be estimated. Huge regions of permafrost with a high (several tens of percent by weight) content of water ice are shown to be present in the north and the south of Mars. The continuous observations of Mars for 12 months, from February 18, 2002, through February 8, 2003, are indicative of significant seasonal variations on Mars where the transition from northern winter to northern summer occurred.  相似文献   
7.
We present the results of five-year observations of the southern seasonal cap of Mars based on neutron spectroscopy of the surface fulfilled by the Russian HEND instrument onboard the NASA 2001 Mars Odyssey spacecraft. The numerical modeling of the observational data allowed us to reconstruct the curves of the variations of the total mass of the southern seasonal cap of Mars for different years (three Martian years) and to find the year-to-year variations of the seasonal cycle.  相似文献   
8.
9.
Mafic volcanism of Paleocene age was recently reported in the Valle del Cura region and the El Indio Belt in the aphanitic and very homogenous well-preserved lavas flows of the Río Frío Basalts unit. These are high-K basalts, with high Fe2O3 and TiO2 contents that imply an alkaline tendency and show typical intraplate-type patterns on a MORB normalized trace elements plot. Sr and Nd isotopic ratios evidence a mantle affinity. The chemistry indicates that these rocks are high temperature melts that result from a low degree of melting of an enriched portion of lithospheric mantle, with no contamination from crustal derived components. The alkaline back-arc Las Máquinas Basalts of Lower Miocene age are derived from more primitive magmas closer to the original source. Mantle composition was relatively constant from Paleocene to Lower Miocene in the studied latitudes over the Pampean flat-slab. Both mafic units share the isotopic trend of pre-Miocene mafic lavas from the Central Andes that were not affected by crustal contamination. Post-Miocene mafic lavas show a strong influence from crust-related processes.  相似文献   
10.
The far-side solar eruptive event SOL2014-09-01 produced hard electromagnetic and radio emissions that were observed with detectors at near-Earth vantage points. Especially challenging was a long-duration >?100 MeV \(\gamma\)-ray burst that was probably produced by accelerated protons exceeding 300 MeV. This observation raised the question how high-energy protons could reach the Earth-facing solar surface. Some preceding studies discussed a scenario in which protons accelerated by a shock driven by a coronal mass ejection high in the corona return to the solar surface. We continue with the analysis of this challenging event, involving radio images from the Nançay Radioheliograph and hard X-ray data from the High Energy Neutron Detector (HEND) of the Gamma-Ray Spectrometer onboard the Mars Odyssey space observatory located near Mars. HEND recorded unocculted flare emission. The results indicate that the emissions observed from the Earth’s direction were generated by flare-accelerated electrons and protons trapped in static long coronal loops. They can be reaccelerated in these loops by a shock wave that was excited by the eruption, being initially not driven by a coronal mass ejection. The results highlight ways to address the remaining questions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号