首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
地球物理   5篇
地质学   1篇
天文学   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  1989年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
Sea level rise (SLR) is threatening coastal marshes, leading to large-scale marsh loss in several micro-tidal systems. Early recognition of marsh vulnerability to SLR is critical in these systems to aid managers to take appropriate restoration or mitigation measures. However, it is not clear if current marsh vulnerability indicators correctly assess long-term stability of the marsh system. In this study, two indicators of marsh stress were studied: (i) the skewness of the marsh elevation distribution, and (ii) the abundance of codominant species in mixtures. We combined high-precision elevation measurements (GPS), LiDAR imagery, vegetation surveys and water level measurements to study these indicators in an organogenic micro-tidal system (Blackwater River, Maryland, USA), where large-scale historical conversion from marshes to shallow ponds resulted in a gradient of increasing marsh loss. The two indicators reveal increasingly stressed marshes along the marsh loss gradient, but suggest that the field site with the most marsh loss seems to experience less stress. For the latter site, previous research indicates that wind waves generated on interior marsh ponds contribute to lateral erosion of surrounding marsh edges and hence marsh loss. The eroded marsh sediment might temporarily provide the remaining marshes with the necessary sediment to keep up with relative SLR. However, this is only a short-term alleviation, as lateral marsh edge erosion and sediment export lead to severe marsh loss in the long term. Our findings indicate that marsh elevation skewness and the abundance of codominant species in mixtures can be used to supplement existing marsh stress indicators, but that additional indices such as fetch length and the sediment budget should be included to account for lateral marsh erosion and sediment export and to correctly assess long-term stability of micro-tidal marshes. © 2020 John Wiley & Sons, Ltd.  相似文献   
2.
Batch and flow-through experiments were performed on quartz–feldspar granular aggregates at hydrothermal conditions (up to ≈150 °C, up to 5 MPa effective pressure, and near-neutral pH) for up to 141 days. The effect of dissolution–precipitation reactions on the surface morphology of the mineral grains was investigated. The starting materials as well as the solids and fluids resulting from the experiments were characterized using BET, energy dispersive X-ray spectroscopy, electron microprobe analysis, inductively coupled plasma-optical emission spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, and X-ray fluorescence spectroscopy. The electrical conductivity of fluid samples was used as a proxy for the evolution of the fluid composition in the experiments. The chemical analyses of the fluids in combination with hydrogeochemical simulations with PHREEQC suggested the precipitation of Al–Si-bearing solid phases. Electron microscopy confirmed the formation of secondary amorphous Al–Si-bearing solid phases. The microscopic observations are consistent with a process of stoichiometric dissolution of the mineral grains, transport of dissolved ions in the fluid phase, and spatially coupled precipitation of sub-μm sized amorphous particles on mineral surfaces. These findings shed light onto early stages of diagenesis of quartz–feldspar sands and indicate that amorphous phases may be precursors for the formation of crystalline phases, for example, clay minerals.  相似文献   
3.
This paper deals with the problem of time-varying point loads applied onto the surface of an elastic half-space and the stresses that such loads elicit within that medium. The emphasis is on the evaluation of the isobaric contours for all six of the stress components at various frequencies of engineering interest and for a full range of Poisson’s ratios. The extensive set of pressure bulbs presented herein may be of help in predicting the severity of dynamic effects in common practical situations in engineering—or even the lack thereof.  相似文献   
4.
Rock fractures are of great practical importance to petroleum reservoir engineering because they provide pathways for fluid flow, especially in reservoirs with low matrix permeability, where they constitute the primary flow conduits. Understanding the spatial distribution of natural fracture networks is thus key to optimising production. The impact of fracture systems on fluid flow patterns can be predicted using discrete fracture network models, which allow not only the 6 independent components of the second‐rank permeability tensor to be estimated, but also the 21 independent components of the fully anisotropic fourth‐rank elastic stiffness tensor, from which the elastic and seismic properties of the fractured rock medium can be predicted. As they are stochastically generated, discrete fracture network realisations are inherently non‐unique. It is thus important to constrain their construction, so as to reduce their range of variability and, hence, the uncertainty of fractured rock properties derived from them. This paper presents the underlying theory and implementation of a method for constructing a geologically realistic discrete fracture network, constrained by seismic amplitude variation with offset and azimuth data. Several different formulations are described, depending on the type of seismic data and prior geologic information available, and the relative strengths and weaknesses of each approach are compared. Potential applications of the method are numerous, including the prediction of fluid flow, elastic and seismic properties of fractured reservoirs, model‐based inversion of seismic amplitude variation with offset and azimuth data, and the optimal placement and orientation of infill wells to maximise production.  相似文献   
5.
Although clay is composed of disconnected anisotropic clay platelets, many rock physics models treat the clay platelets in shale as interconnected. However, the clay matrix in shales can be modelled as anisotropic clay platelets embedded within a soft isotropic interplatelet region, allowing the influence of disconnected clay platelets on the elastic properties of the clay matrix to be analysed. In this model, properties of the interplatelet region are governed by its effective bulk and shear moduli, whereas the effective properties of the clay platelets are governed by their volume fraction, aspect ratio and elastic stiffness tensor. Together, these parameters implicitly account for variations in clay and fluid properties, as well as fluid saturation. Elastic stiffnesses of clay platelets are obtained from the literature, including both experimental measurements and first-principles calculations of the full anisotropic (monoclinic or triclinic) elastic stiffness tensors of layered silicates. These published elastic stiffness tensors are used to compile a database of equivalent transverse isotropic elastic stiffness tensors, and other physical properties, for eight common varieties of layered silicates. Clay matrix anisotropy is then investigated by examining the influence of these different elastic stiffnesses, and of varying model parameters, upon the effective transverse isotropic elastic stiffness tensor of the clay matrix. The relationship between the different clay minerals and their associated anisotropy parameters is studied, and their impact on the resulting anisotropy of the clay matrix is analysed.  相似文献   
6.
According to a proposal of Lloyd-Evans (1985), the average charge of particles in the cosmic radiation near 1014eV can be determined by observing the effect of the solar magnetic field on the Sun's shadow in the angular distribution of energetic primary cosmic ray particles. This suggestion is shown to be realizable with a new type of EAS-array proposed for the purpose of high energy -ray astronomy. The same measurement provides information on the integrated strength of the solar magnetic field. As the array will be sensitive and provide good angular resolution down to a few times 1012eV, more detailed results on the primary composition near 1013eV can be obtained by investigating the shape of the shadow of the Moon as affected by the geomagnetic field.  相似文献   
7.
Since natural fractures in petroleum reservoirs play an important role in determining fluid flow during production, knowledge of the orientation and density of fractures is required to optimize production. This paper outlines the underlying theory and implementation of a fast and efficient algorithm for upscaling a Discrete Fracture Network (DFN) to predict the fluid flow, elastic and seismic properties of fractured rocks. Potential applications for this approach are numerous and include the prediction of fluid flow, elastic and seismic properties for fractured reservoirs, model‐based inversion of seismic Amplitude Versus Offset and Azimuth (AVOA) data and the optimal placement and orientation of infill wells to maximize production. Given that a single fracture network may comprise hundreds of thousands of individual fractures, the sheer size of typical DFNs has tended to limit their practical applications. This paper demonstrates that with efficient algorithms, the utility of Discrete Fracture Networks can be extended far beyond mere visualization.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号