首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
大气科学   1篇
地球物理   2篇
地质学   2篇
海洋学   2篇
自然地理   1篇
  2017年   1篇
  2011年   1篇
  2009年   1篇
  2006年   1篇
  2005年   1篇
  1990年   1篇
  1988年   1篇
  1983年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
2.
Willow communities dominate mid‐elevation riparian areas throughout the Rocky Mountains of North America. However, many willow stands are rapidly declining in aerial cover and individual plants in stature. A poor understanding of the processes that control willow establishment hinders identifying the causes of this decline. We analysed the processes that have facilitated or limited willow establishment over the last half of the 20th century on two large floodplains in Rocky Mountain National Park in Colorado by addressing two questions: (1) How does hydrologic regime control willow establishment on different fluvial landforms? (2) How might climate‐driven variations in hydrologic regime affect future willow establishment? We precisely aged willows on the three most common fluvial landforms, stream point bars, drained beaver ponds, and abandoned channels, and statistically related establishment dates to patterns of annual stream peak flow. The role of peak flow on willow establishment varied significantly by landform. Willow recruitment had occurred nearly every year on point bars. In former beaver complexes, most willows had established following dam breaches, whereas willows had established on abandoned channels for several years following channel avulsion. Establishment on point bars and abandoned channels was driven by peak flows of 2‐ to 5‐year return intervals, whereas in abandoned beaver ponds most establishment was associated with flow events of >5‐year return interval. Models of climate change suggest that temperatures will increase and precipitation seasonality will shift over the coming decades in the Rocky Mountains, leading to earlier spring runoff, lower summer and fall flows, decreased snowpack and decreased soil moisture. Such changes are likely to diminish opportunities for willow establishment. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
3.
4.
When constructing diagnostic systems or using knowledge-based systems,e.g.in analytical chemistry,features of different type and character,represented by numbers,trajectories or linguistic variables suchas intensities or colours,must be considered.To find neighbourhoods or to fill in missing values,thenotion of similarity is of essential importance.The paper presents a new fuzzy-set-theory-based approachto quantifying similarity and provides a system of rules to be implemented into the diagnostic part of theknowledge base to be used.  相似文献   
5.
The abundance of As and Sb in aqueous, mineral and biological reservoirs was examined at El Tatio Geyser Field, a unique hydrothermal basin located in the Atacama Desert region of Chile. Here the concentration of total As and Sb in hydrothermal springs and discharge streams are the highest reported for a natural surface water, and the geyser basin represents a significant source of toxic elements for downstream users across Region II, Chile. The geyser waters are near neutral Na:Cl type with ∼0.45 and 0.021 mmol L−1 total As and Sb, respectively, primarily in the reduced (III) redox state at the discharge with progressive oxidation downstream. The ferric oxyhydroxides associated with the microbial mats and some mineral precipitates accumulate substantial As that was identified as arsenate by XAS analysis (>10 wt% in the mats). This As is easily mobilized by anion exchange or mild dissolution of the HFO, and the ubiquitous microbial mats represent a significant reservoir of As in this system. Antimony, in contrast, is not associated with the mineral ferric oxides or the biomats, but is substantially enriched in the silica matrix of the geyserite precipitates, up to 2 wt% as Sb2O3. Understanding the mobility and partitioning behavior of these metalloids is critical for understanding their eventual impact on regional water management.  相似文献   
6.
New N inputs via biological N2-fixation play a critical role in supporting oceanic primary production and influencing global biogeochemical cycles. Numerous studies have documented significant N2-fixation rates in the North Atlantic, but relatively little is known of the pathways and fluxes of new N through planktonic food webs. Here, we report the natural abundance of 15N in, and contribution of diazotroph N (ND) inputs to, suspended particles and mesozooplankton collected along two transects in the subtropical North Atlantic Ocean (STNA). Samples were collected in April-May 2000 along the two main transects to evaluate spatial trends of 15N within the Western Atlantic and across the basin. We found that N2-fixation is a key component in supporting both primary and secondary productions throughout the STNA. ND contribution was generally higher for suspended particles than for mesozooplankton, and we observed a high ND contribution to suspended particles over large spatial scales in the western and central STNA. Mesozooplankton ND incorporation suggests that diazotroph production supports oceanic food webs over longer timescales (e.g., weeks to months) than that of particle turnover (e.g., days). Larger mesozooplankton (1000-4000 ??m) generally incorporated more ND than smaller mesozooplankton (250-1000 ??m), and thus may exert a stronger influence on an ND movement within the water column. Spatial and vertical patterns of variation in mesozooplankton ??15N also suggest either broad geographical differences in an ND contribution to secondary production, or temporal variations in ND incorporation via mesozooplankton communities.  相似文献   
7.
Climate change will have serious repercussions for agriculture, ecosystems, and farmer livelihoods in Central America. Smallholder farmers are particularly vulnerable due to their reliance on agriculture and ecosystem services for their livelihoods. There is an urgent need to develop national and local adaptation responses to reduce these impacts, yet evidence from historical climate change is fragmentary. Modeling efforts help bridge this gap. Here, we review the past decade of research on agricultural and ecological climate change impact models for Central America. The results of this review provide insights into the expected impacts of climate change and suggest policy actions that can help minimize these impacts. Modeling indicates future climate-driven changes, often declines, in suitability for Central American crops. Declines in suitability for coffee, a central crop in the regional economy, are noteworthy. Ecosystem models suggest that climate-driven changes are likely at low- and high-elevation montane forest transitions. Modeling of vulnerability suggests that smallholders in many parts of the region have one or more vulnerability factors that put them at risk. Initial adaptation policies can be guided by these existing modeling results. At the same time, improved modeling is being developed that will allow policy action specifically targeted to vulnerable groups, crops, and locations. We suggest that more robust modeling of ecological responses to climate change, improved representation of the region in climate models, and simulation of climate influences on crop yields and diseases (especially coffee leaf rust) are key priorities for future research.  相似文献   
8.
A biocide decay model was developed to assess the potential efficacy and environmental impacts associated with using glutaraldehyde to treat unballasted overseas vessels trading on the Laurentian Great Lakes. The results of Monte Carlo simulations indicate that effective glutaraldehyde concentrations can be maintained for the duration of a vessel's oceanic transit (approximately 9-12 days): During this transit, glutaraldehyde concentrations were predicted to decrease by approximately 10% from initial treatment levels (e.g., 500 mgL(-1)). In terms of environmental impacts, mean glutaraldehyde concentrations released at Duluth-Superior Harbor, MN were predicted to be 100-fold lower than initial treatment concentrations, and ranged from 3.2 mgL(-1) (2 SD: 2.74) in April to 0.7 mgL(-1) (2 SD: 1.28) in August. Sensitivity analyses indicated that the re-ballasting dilution factor was the major variable governing final glutaraldehyde concentrations; however, lake surface temperatures became increasingly important during the warmer summer months.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号